Correction des exercices de révisions bac n°7 : équations différentielles, fonctions trigonométriques

Exercice 1 (12 pts) 1. (2 pts)
$$(E)$$
: $10y' + y = 30 \Leftrightarrow y' = -\frac{1}{10}y + 3$.

Les solutions de l'équation(E) sont de la forme

$$f: t \mapsto Ke^{-\frac{t}{10}} - \frac{3}{-\frac{1}{10}} = Ke^{-\frac{t}{10}} + 30$$

(1 pt) Or
$$v(0) = 0 \Leftrightarrow K + 30 = 0 \Leftrightarrow K = -30$$

Donc
$$v(t) = -30e^{-\frac{t}{10}} + 30 = 30\left(1 - e^{-\frac{t}{10}}\right)$$

2. a. (2 pts) On dérive
$$v$$
: pour $t \ge 0$, $v'(t) = 30 \times -\left(-\frac{1}{10}\right) \times e^{-\frac{t}{10}} = 3e^{-\frac{t}{10}}$

Donc v'(t) est positif pour tout t et v est croissante sur $[0; +\infty[$.

2. b. (2 pts) Par composition,
$$\lim_{t\to +\infty} e^{-\frac{t}{10}} = 0$$
 donc $\lim_{t\to +\infty} v(t) = 30$

3. a. (2 pts) On utilise un tableau de valeurs de v' avec un pas de 0,1 pour trouver que la vitesse se stabilise à partir d'environ 34 secondes.

3. b. (3 pts)

$$v'(t) < 0.1 \Leftrightarrow 3e^{-\frac{t}{10}} < 0.1 \Leftrightarrow e^{-\frac{t}{10}} < \frac{1}{30} \Leftrightarrow -\frac{t}{10} < ln\left(\frac{1}{30}\right) \Leftrightarrow -\frac{t}{10} < -ln(30) \Leftrightarrow t > 10 \times ln(30)$$

Donc la valeur exacte du nombre recherché est $10 \times \ln(30)$

Exercice 2 (4 pts) 1. (2 pts) Essayons de calculer le membre de gauche : $f_0'(x) + f_0(x)$. Pour tout x réel :

$$f_0'(x) = (2x+3)e^{-x} + (x^2+3x) \times (-e^{-x}) = (2x+3-x^2-3x)e^{-x} = (-x^2-x+3)e^{-x}.$$

Ainsi,
$$f_0'(x) + f_0(x) = (-x^2 - x + 3)e^{-x} + (x^2 + 3x)e^{-x} = (-x^2 - x + 3 + x^2 + 3x)e^{-x} = (2x + 3)e^{-x}$$
.

On retrouve bien le membre de droite. Donc la fonction f_0 est bien une solution de (E): $y' + y = (2x + 3)e^{-x}$.

2. (1 pt)
$$(E_0)$$
: $y' + y = 0 \Leftrightarrow y' = -y$.

Les solutions de cette équation homogène sont de la forme $f(x) = Ke^{-x}$ où $K \in \mathbb{R}$.

3. (1 pt) f_0 étant une solution particulière, les solutions de (E) sont de la forme $Ke^{-x} + f_0(x)$, soit :

$$Ke^{-x} + (x^2 + 3x)e^{-x} = (x^2 + 3x + K)e^{-x}$$
 où K est un réel.

Exercice 3 (12 pts)

1a. (2 pts) On dérive f comme un produit.

Pour tout
$$x \in [0; \pi]$$
, $f'(x) = e^x \sin(x) + e^x \cos(x) = e^x (\sin(x) + \cos(x))$

1b. (2 pts) Les fonctions
$$sin$$
 et cos sont positives sur l'intervalle $\left[0; \frac{\pi}{2}\right]$.

Donc $(\sin(x) + \cos(x))$ est également positif sur cet intervalle, et donc f'(x) l'est aussi.

Donc f est strictement croissante sur l'intervalle $\left[0; \frac{\pi}{2}\right]$.

2a. **(2 pts)** On calcule $f(0) = e^0 \sin(0) = 0$ et $f'(0) = e^0 (\sin(0) + \cos(0)) = 1(0+1) = 1$.

Donc la tangente T a pour équation y = f'(0)(x - 0) + f(0) = 1x + 0 = x.

2b. (2 pts) On dérive à nouveau f'.

$$f''(x) = e^x(\sin(x) + \cos(x)) + e^x(\cos(x) - \sin(x)) = e^x(\sin(x) + \cos(x) + \cos(x) - \sin(x)) = 2e^x\cos(x)$$

Or, à nouveau, la fonction \cos est positive sur l'intervalle $\left[0;\frac{\pi}{2}\right]$ donc f''(x) est positif, ainsi f est convexe sur cet intervalle.

2c. (2 pts) f étant convexe sur $\left[0; \frac{\pi}{2}\right]$, sa courbe est au-dessus de sa tangente T, donc $f(x) \ge x$.

D'où
$$e^x \sin(x) \ge x$$
 pour tout $x \in \left[0; \frac{\pi}{2}\right]$.

2d. (2 pts) En $x = \frac{\pi}{2}$, la fonction $\cos s$ annule et change de signe. Donc f''(x) également.

f change donc de convexité. Donc le point d'abscisse $\frac{\pi}{2}$ de la courbe \mathcal{C}_f est un point d'inflexion.

Exercice 4

Affirmation 1

Supposons qu'une telle fonction constante f existe. On a tout, pour tout réel x, f(x) = k avec $k \in \mathbb{R}$ et

$$f'(x)=0$$
. De plus, d'après (E) , $f'(x)=\frac{3}{2}f(x)+2 \Leftrightarrow 0=\frac{3}{2}k+2 \Leftrightarrow \frac{3}{2}k=-2 \Leftrightarrow k=-\frac{4}{3}k$

Ainsi, la fonction constante $f(x) = -\frac{4}{3}$ est bien solution de l'équation (E). L'affirmation est vraie.

Affirmation 2

Les solutions de
$$(E)$$
 sont de la forme $f(x) = Ke^{\frac{3}{2}x} - \frac{2}{\frac{3}{2}} = Ke^{\frac{3}{2}x} - \frac{4}{3}$

En utilisant la condition initiale f(0) = 0, on obtient $Ke^{\frac{3}{2} \times 0} - \frac{4}{3} = 0 \iff K - \frac{4}{3} = 0 \iff K = \frac{4}{3}$

Donc
$$f(x) = \frac{4}{3}e^{\frac{3}{2}x} - \frac{4}{3}$$

On a alors $f'(x) = \frac{4}{3} \times \frac{3}{2} e^{\frac{3}{2}x} = 2e^{\frac{3}{2}x}$ et le coefficient directeur de la tangente au point d'abscisse 1 de \mathcal{C}_f est donc $f'(1) = 2e^{\frac{3}{2} \times 1} = 2e^{\frac{3}{2}}$. L'affirmation est vraie.

Exercice 5 (20 pts)

Partie A

1. (3 pts) On a f(0) = 220, soit $ae^{-\frac{0}{2}} + b = a + b = 220$.

De plus, $f'(t) = -\frac{a}{2}e^{-\frac{t}{2}}$. Or :

$$f'(t) + \frac{1}{2}f(t) = 10$$

$$\Leftrightarrow -\frac{a}{2}e^{-\frac{t}{2}} + \frac{1}{2}(ae^{-\frac{t}{2}} + b) = 10$$

$$\Leftrightarrow \frac{1}{2}b = 10$$

$$\Leftrightarrow b = 20$$

Et de a + b = 220, on déduit a = 200.

2a. (2 pts) Pour tout t positif:

$$f'(t) = -\frac{200}{2}e^{-\frac{t}{2}} = -100e^{-\frac{t}{2}}$$

Cette dérivée étant négative, f est décroissante sur \mathbb{R}^+ .

2b. (2 pts) On a $\lim_{t\to +\infty}e^{-\frac{t}{2}}=0$ donc $\lim_{t\to +\infty}f(t)=20$ et $\mathcal C$ admet une asymptote horizontale d'équation y=20.

3a. (1 pt) On situe ce moment à 3 h 48 mn environ.

3b. (3 pts) On résout une équation :

$$f(t) = 50 \Leftrightarrow 200e^{-\frac{t}{2}} + 20 = 50 \Leftrightarrow 200e^{-\frac{t}{2}} = 30 \Leftrightarrow e^{-\frac{t}{2}} = \frac{3}{20} \Leftrightarrow -\frac{t}{2} = \ln\left(\frac{3}{20}\right) \Leftrightarrow t = -2\ln\left(\frac{3}{20}\right) \approx 3,79$$

Partie B

1a. (3 pts)
$$d_0 = f(0) - f(1) \approx 78,7$$
, $d_1 = f(1) - f(2) \approx 47,7$ et $d_2 = f(2) - f(3) \approx 29,0$.

1b. (4 pts) Pour tout n entier,

$$d_n = \left(200e^{-\frac{n}{2}} + 20\right) - \left(200e^{-\frac{n+1}{2}} + 20\right) = 200\left(e^{-\frac{n}{2}} - e^{-\frac{n+1}{2}}\right) = 200\left(e^{-\frac{n}{2}} - e^{-\frac{n}{2}-\frac{1}{2}}\right) = 200e^{-\frac{n}{2}}\left(1 - e^{-\frac{1}{2}}\right)$$

Or $\lim_{n\to+\infty} e^{-\frac{n}{2}} = 0$ donc $\lim_{n\to+\infty} d_n = 0$.

2. (2 pts) Par des calculs successifs, on trouve n = 6.

Exercice 6 (16 pts)

1. Cette première question est difficile, mais il est possible de la passer.

• (2 pts) Supposons que f est solution de l'équation (E), c'est-à-dire que $f' = -\frac{1}{20}f(3 - \ln(f))$

Soit $g = \ln(f)$. Montrons que g est solution de l'équation (E_0) . On dérive g:

$$g' = \frac{f'}{f} = \frac{-\frac{1}{20}f(3 - \ln(f))}{f} = -\frac{1}{20}(3 - \ln(f)) = -\frac{3}{20} + \frac{1}{20}\ln(f) = \frac{1}{20}g - \frac{3}{20}$$

On a bien montré que g était solution de l'équation (E_0) .

• (2 pts) Supposons que g est solution de l'équation (E_0) , c'est-à-dire que $g'=\frac{1}{20}g-\frac{3}{20}$

Montrons que f est solution de l'équation (E).

On remarque d'abord que si $g = \ln(f)$, alors $f = e^g$ et donc on peut calculer f':

$$f' = g'e^g = \left(\frac{1}{20}g - \frac{3}{20}\right)e^g = \left(\frac{1}{20}\ln(f) - \frac{3}{20}\right)f = -\frac{1}{20}f(3 - \ln(f))$$

On a bien montré que f était solution de l'équation (E)

2a. (2 pts) Les solutions de l'équation (E_0) sont de la forme :

$$g(t) = C e^{\frac{1}{20}t} - \frac{-\frac{3}{20}}{\frac{1}{20}} = C e^{\frac{t}{20}} + 3$$
 , $C \in \mathbb{R}$

2b. (2 pts) Si g est solution de (E_0) , alors $f = e^g$ est solution de (E). On a alors pour tout $t \in [0; +\infty[$

$$f(t) = \exp\left(Ce^{\frac{t}{20}} + 3\right) = \exp\left(3 + C\exp\left(\frac{t}{20}\right)\right)$$
, $C \in \mathbb{R}$

2c. (2 pts) D'après le début de l'énoncé, f(0)=1 (soit un millier). Ainsi :

$$\exp\left(3 + C\exp\left(\frac{0}{20}\right)\right) = 1 \Leftrightarrow \exp(3 + C) = 1 \Leftrightarrow 3 + C = 0 \Leftrightarrow C = -3$$

3a. (2 pts)
$$\lim_{t\to +\infty} exp\left(\frac{t}{20}\right) = +\infty \text{ donc } \lim_{t\to +\infty} 3 - 3 \exp\left(\frac{t}{20}\right) = -\infty.$$

Or
$$\lim_{T \to -\infty} exp(T) = 0$$
 donc par composition, $\lim_{t \to +\infty} f(t) = \lim_{t \to +\infty} \exp\left(3 - 3\exp\left(\frac{t}{20}\right)\right) = 0$

3b. (4 pts)
$$f$$
 est de la forme e^u où $u(t)=3-3\exp\left(\frac{t}{20}\right)$ et ainsi $u'(t)=-\frac{3}{20}\exp\left(\frac{t}{20}\right)$

Ainsi,
$$f(t) = -\frac{3}{20} exp\left(\frac{t}{20}\right) \times exp\left(3 - 3 exp\left(\frac{t}{20}\right)\right)$$
.

Les exponentielles sont positives, donc le signe de f(t) est celui de $-\frac{3}{20}$ qui est négatif.

f est donc décroissante sur $[0; +\infty[$.

3c. (4 pts)
$$f(t) < 0.02$$

$$\Leftrightarrow \exp\left(3 - 3\exp\left(\frac{t}{20}\right)\right) < 0.02$$

$$\Leftrightarrow 3 - 3 \exp\left(\frac{t}{20}\right) < \ln(0.02)$$

$$\Leftrightarrow$$
 $-3 exp\left(\frac{t}{20}\right) < \ln(0.02) - 3$

$$\Leftrightarrow exp\left(\frac{t}{20}\right) > \frac{\ln(0.02) - 3}{-3}$$

$$\Leftrightarrow \frac{t}{20} > \ln\left(\frac{\ln(0,02) - 3}{-3}\right)$$

$$\iff t > 20 \ln \left(\frac{\ln(0,02) - 3}{-3} \right)$$

Le membre de droite vaut environ 16,69. Ainsi, c'est au bout de 17 années que la taille de l'échantillon sera inférieure à vingt individus.

Exercice 7 (20 pts)

- **1.** (2 pt) Si f est une fonction constante solution de (E_0) , on a f'=0, or f'=f, donc f=0.
- **2.** (2 pts) Les solutions de (E_0) sont les fonctions de la forme $f(x) = C e^x$ où C est un réel.
- **3.** (3 pts) Pour x réel, on a $h'(x) = -2\sin(x) + \cos(x)$.

Or h(x) - cos(x) - 3 sin(x) = 2 cos(x) + sin(x) - cos(x) - 3 sin(x) = cos(x) - 2 sin(x) = h'(x). Donc h est solution de (E).

- **4.** (4 pts) C'est un résultat qui est dans le cours : les solutions de (E) sont de la forme u+h, où u est solution de (E_0) et h une solution particulière de (E). Ici, on nous demande de le redémontrer.
- Si f est solution de (E), alors : f'(x) = f(x) cos(x) 3 sin(x).

Il faut maintenant montrer que f-h est solution de (E_0) , c'est-à-dire que (f-h)'=f'-h'=f-h. Or :

$$f'(x) - h'(x) = (f(x) - \cos(x) - 3\sin(x)) - (\cos(x) - 2\sin(x)) = f(x) - 2\cos(x) - \sin(x) = f(x) - h(x).$$
Ainsi $f - h$ est solution de (F)

- Ainsi, f h est solution de (E_0) .
- Si f h est solution de (E_0) , alors (f h)' = f' h' = f h, c'est-à-dire que f' = f h + h'.

On a alors $f'(x) = f(x) - 2\cos(x) - \sin(x) + \cos(x) - 2\sin(x) = f(x) - \cos(x) - 3\sin(x)$.

f est alors bien solution de (E).

5. (3 pts) Les solutions f de (E) vérifie que f-h est solution de (E_0) , c'est-à-dire que pour tout x réel,

 $f(x) - h(x) = C e^x$ où C est un réel d'après la question 2,

- soit $f(x) = C e^x + h(x) = C e^x + 2\cos(x) + \sin(x)$.
- **6.** (2 pts) Si g(0) = 0, on a $Ce^0 + 2\cos(0) + \sin(0) = 0 \Leftrightarrow C + 2 = 0 \Leftrightarrow C = -2$.

Ainsi, $g(x) = -2e^x + 2\cos(x) + \sin(x)$.

7. (4 pts) On se rassure en remarquant que c'est bien la fonction trouvée précédemment.

La question a l'air compliquée, mais c'est l'intégrale d'une somme : on peut la diviser en 3 intégrales.

$$\int_{0}^{\frac{\pi}{2}} -2e^{x} + \sin(x) + 2\cos(x) \ dx = \left[-2e^{x}\right]_{0}^{\frac{\pi}{2}} + \left[-\cos(x)\right]_{0}^{\frac{\pi}{2}} + \left[2\sin(x)\right]_{0}^{\frac{\pi}{2}} = -2e^{\frac{\pi}{2}} - (-2e^{0}) - (-\cos(0)) + 2\sin\left(\frac{\pi}{2}\right) = -2e^{\frac{\pi}{2}} + 5$$

Exercice 8 (20 pts)

1. (3 pts) On sait que pour tout x réel, $-1 \le -\cos(x) \le 1$ et $-1 \le \sin(x) \le 1$. Partie A (12 pts)

En additionnant ces deux égalités :

- $-2 \le -\cos(x) + \sin(x) \le 2$
- $\Leftrightarrow -1 \le -\cos(x) + \sin(x) + 1 \le 3$
- $\Leftrightarrow -1 \times e^{-x} \le (-\cos(x) + \sin(x) + 1)e^{-x} \le 3 \times e^{-x}$
- $\Leftrightarrow -e^{-x} \le f(x) \le 3e^{-x}$
- **2.** (2 pts) $\lim_{x\to +\infty} e^{-x}=0$ donc f est encadrée entre deux fonctions qui tendent vers 0 en $+\infty$.

D'après le théorème des gendarmes, sa limite en $+\infty$ est 0.

- **3.** (3 pts) Soit x réel. f est un produit, que l'on dérive on posant :
- $u(x) = e^{-x} \operatorname{donc} u'(x) = -e^{-x}$
- $v(x) = -\cos(x) + \sin(x) + 1 \operatorname{donc} v'(x) = \sin(x) + \cos(x)$

Ainsi, $f'(x) = -e^{-x}(-\cos(x) + \sin(x) + 1) + e^{-x}(\sin(x) + \cos(x)) = e^{-x}(2\cos(x) - 1)$

- **4a.** (3 pts) Le signe de f'(x) ne dépend que de $2\cos(x) 1$. On doit résoudre une inéquation :
- $2\cos(x) 1 \ge 0$

$$\Leftrightarrow \cos(x) \ge \frac{1}{2}$$

On peut dessiner un cercle trigonométrique pour s'aider.

Les mesures d'angles de $\left[-\pi;\pi\right]$ qui sont solution de cette inéquation sont celles de l'intervalle $\left[-\frac{\pi}{3};\frac{\pi}{3}\right]$.

Ainsi, f'(x) est positif sur $\left[-\frac{\pi}{3}; \frac{\pi}{3}\right]$ et négatif sur $\left[-\pi; -\frac{\pi}{3}\right] \cup \left[\frac{\pi}{3}; \pi\right]$

4b. (1 pt) f est décroissante sur $\left[-\pi; -\frac{\pi}{3}\right]$, puis croissante sur $\left[-\frac{\pi}{3}; \frac{\pi}{3}\right]$ et enfin décroissante sur $\left[\frac{\pi}{3}; \pi\right]$ charly-piva.fr

Suite de la correction de l'exercice 8

Partie B (8 pts)

1. (2 pts) Pour *x* réel :

$$f(x) - g(x) = e^{-x}(-\cos(x) + \sin(x) + 1) - (-e^{-x}\cos(x)) = e^{-x}(\sin(x) + 1)$$

Le signe ne dépend que de (sin(x) + 1). Or pour tout x réel, $sin(x) \ge -1$ donc sin(x) + 1 est positif. Ainsi, C_f est au-dessus de C_q sur \mathbb{R} .

2. (2 pts) Pour x réel, on pose

$$u(x) = -\frac{\cos(x)}{2} - \frac{\sin(x)}{2} - 1$$
 $u'(x) = \frac{\sin(x)}{2} - \frac{\cos(x)}{2}$
 $v(x) = e^{-x}$ $v'(x) = -e^{-x}$

On calcule ensuite:

$$H'(x) = \left(\frac{\sin(x)}{2} - \frac{\cos(x)}{2}\right)e^{-x} + \left(-\frac{\cos(x)}{2} - \frac{\sin(x)}{2} - 1\right) \times (-e^{-x})$$

$$H'(x) = e^{-x} \left(\frac{\sin(x)}{2} - \frac{\cos(x)}{2} + \frac{\cos(x)}{2} + \frac{\sin(x)}{2} + 1\right)$$

$$H'(x) = (\sin x + 1)e^{-x}$$

3. (1 pt) Il s'agit de calculer :

$$\int_{-\frac{\pi}{2}}^{\frac{3\pi}{2}} f(x) - g(x) dx = \int_{-\frac{\pi}{2}}^{\frac{3\pi}{2}} (\sin x + 1) e^{-x} dx = H\left(\frac{3\pi}{2}\right) - H\left(-\frac{\pi}{2}\right)$$
(2 pts) Or $H\left(\frac{3\pi}{2}\right) = \left(-\frac{\cos\left(\frac{3\pi}{2}\right)}{2} - \frac{\sin\left(\frac{3\pi}{2}\right)}{2} - 1\right) e^{-\frac{3\pi}{2}} = \left(-\frac{-1}{2} - 1\right) e^{-\frac{3\pi}{2}} = -\frac{1}{2} e^{-\frac{3\pi}{2}}$

et
$$H\left(-\frac{\pi}{2}\right) = \left(-\frac{\cos\left(-\frac{\pi}{2}\right)}{2} - \frac{\sin\left(-\frac{\pi}{2}\right)}{2} - 1\right)e^{\frac{\pi}{2}} = \left(-\frac{(-1)}{2} - 1\right)e^{\frac{\pi}{2}} = -\frac{1}{2}e^{\frac{\pi}{2}}$$

Ainsi, l'aire demandée est de $-\frac{1}{2}e^{-\frac{3\pi}{2}}+\frac{1}{2}e^{\frac{\pi}{2}}$ unités d'aire.

(1 pt) Comme une unité de longueur mesure deux centimètres, une unité d'aire est 4 cm².

L'aire du domaine D est $4 \times \left(-\frac{1}{2}e^{-\frac{3\pi}{2}} + \frac{1}{2}e^{\frac{\pi}{2}}\right)$ soit environ 9,60 cm².