Révisions bac n°7 : équations différentielles, fonctions trigonométriques

Exercice 1 (3 pts)

Un cycliste roule sur une route descendante, rectiligne et très longue.

On note v(t) sa vitesse (en $m. s^{-1}$) à l'instant t (en s).

On suppose que la fonction v ainsi définie est dérivable sur $[0; +\infty[$ et que v est solution sur $[0; +\infty[$ de l'équation différentielle (E): 10y' + y = 30.

Enfin, on suppose que le cycliste s'élance avec une vitesse initiale nulle, c'est-à-dire que v(0) = 0.

1. Démontrer que :

$$v(t) = 30(1 - e^{-\frac{t}{10}})$$

- **2. a.** Déterminer les variations de v sur $[0; +\infty[$
- **b.** Déterminer la limite de la fonction v en $+\infty$.
- **3.** Dans cette question, on considère que la vitesse du cycliste est stabilisée lorsque son accélération v'(t) est inférieure à $0.1 \, m. \, s^{-2}$.
- **a.** A la calculatrice, déterminer à la seconde près la plus petite valeur de t à partir de laquelle la vitesse du cycliste est stabilisée.
- **b.** En résolvant une inéquation, retrouver la valeur exacte du nombre trouvé en question précédente.

Exercice 2 (1 pt)

On considère (E) l'équation différentielle $y' + y = (2x + 3)e^{-x}$ où y est une fonction de la variable réelle x.

- **1.** Montrer que la fonction f_0 définie pour tout nombre réel x par $f_0(x) = (x^2 + 3x)e^{-x}$ est une solution particulière de l'équation différentielle (E).
- **2.** Résoudre l'équation différentielle (E_0) : y' + y = 0.
- **3.** Déterminer les solutions de l'équation différentielle (E).

Exercice 3 (3 pts)

On désigne par f la fonction définie sur l'intervalle $[0; \pi]$ par $f(x) = e^x \sin(x)$.

On note C_f la courbe représentative de f dans un repère.

- **1.** a. Démontrer que pour tout réel x de l'intervalle $[0; \pi]$, $f'(x) = e^x(\sin(x) + \cos(x))$
 - **b.** Justifier que la fonction f est strictement croissante sur l'intervalle $\left[0; \frac{\pi}{2}\right]$.
- **2. a.** Déterminer une équation de la tangente T à la courbe C_f au point d'abscisse 0.
 - **b.** Démontrer que la fonction f est convexe sur l'intervalle $\left[0; \frac{\pi}{2}\right]$.
 - **c.** En déduire que pour tout réel x de l'intervalle $\left[0; \frac{\pi}{2}\right]$, $e^x \sin(x) \ge x$.
 - **d.** Justifier que le point d'abscisse $\frac{\pi}{2}$ de la courbe \mathcal{C}_f est un point d'inflexion.

Exercice 4 (2 pts)

On considère l'équation différentielle (E): $y' = \frac{3}{2}y + 2$ d'inconnue y, fonction définie et dérivable sur \mathbb{R} . Les affirmations suivantes sont-elles vraies ou fausses ? On justifiera la réponse.

Affirmation 1 : Il existe une fonction constante solution de l'équation différentielle (E).

Dans un repère orthonormé $(0; \vec{\imath}; \vec{\jmath})$, on note \mathcal{C}_f la courbe de la fonction f solution de (E) telle que f(0) = 0.

Affirmation 2 : La tangente au point d'abscisse 1 de \mathcal{C}_f a pour coefficient directeur $2e^{\frac{3}{2}}$.

Exercice 5 (5 pts)

Partie A La température de refroidissement d'un objet fabriqué industriellement est une fonction f du temps t. f est définie sur l'ensemble des nombres réels positifs et vérifie l'équation différentielle :

$$f'(t) + \frac{1}{2}f(t) = 10$$

La température est exprimée en degrés Celsius (${}^{\circ}C$) et le temps t en heures.

1. On admet qu'il existe deux nombres a et b tels que :

$$f(t) = ae^{-\frac{t}{2}} + b$$

Déterminer a et b sachant que pour t=0, la température de l'objet est $220^{\circ}C$.

2. On pourra admettre désormais que la fonction f est définie sur \mathbb{R}^+ par :

$$f(t) = 200e^{-\frac{t}{2}} + 20$$

On note ${\mathcal C}$ sa représentation graphique dans le plan muni d'un repère orthogonal.

- **a.** Étudier les variations de la fonction f sur \mathbb{R}^+ .
- **b.** Étudier la limite de f en $+\infty$. En déduire l'existence d'une asymptote \mathcal{D} à la courbe \mathcal{C} en $+\infty$.
- **3.** a. Donner une valeur approchée, en heures et minutes, du moment où la température de l'objet est $50^{\circ}C$.
 - b. Retrouver ce résultat par le calcul.

Partie B On considère la suite de terme général $d_n = f(n) - f(n+1)$ où $n \in \mathbb{N}$.

 d_n représente l'abaissement de température de l'objet entre l'heure n et l'heure n+1.

- **1. a.** Calculer des valeurs approchées au dixième de d_0 , d_1 et d_2 .
 - **b.** Quelle est la limite de d_n quand n tend vers $+\infty$?
- **2.** Déterminer la plus petite valeur de l'entier n à partir de laquelle l'abaissement de température est inférieur à $5^{\circ}C$.

Exercice 6 (4 pts) Un laboratoire de recherche étudie l'évolution d'une population animale qui semble en voie de disparition. Durant l'année 2000, une étude a été réalisée sur un échantillon de cette population, dont l'effectif initial s'élevait à 1 000.

Cet échantillon évolue et son effectif, exprimé en millier d'individus, est approchée par une fonction f du temps t (exprimé en année à partir de l'origine 2000). D'après le modèle d'évolution choisi, la fonction f est dérivable, strictement positive sur $[0; +\infty[$, et satisfait l'équation différentielle :

(E):
$$y' = -\frac{1}{20}y(3 - \ln(y))$$

1. Démontrer l'équivalence suivante : « une fonction f est solution de l'équation (E) si et seulement si la fonction $g = \ln(f)$ est solution de l'équation différentielle suivante :

$$(E_0)$$
: $y' = \frac{1}{20}y - \frac{3}{20}$

- **2. a.** Donner la solution générale de l'équation (E_0) .
 - **b.** En déduire qu'il existe un réel C tel que, pour tout $t \in [0; +\infty[$:

$$f(t) = \exp\left(3 + C \exp\left(\frac{t}{20}\right)\right)$$

- **c.** En déduire la valeur de *C*.
- **3.** Pour la suite, on admet que la fonction f est définie par

$$f(t) = \exp\left(3 - 3\exp\left(\frac{t}{20}\right)\right)$$

- **a.** Déterminer la limite de la fonction f en $+\infty$.
- **b.** Déterminer le sens de variation de f sur $[0; +\infty[$
- **c.** Résoudre dans $[0; +\infty[$ l'inéquation f(t) < 0.02. Au bout de combien d'années, selon ce modèle, la taille de l'échantillon sera-t-elle inférieure à vingt individus ?

charly-piva.fr

Exercice 7 (5 pts)

On considère l'équation différentielle $(E_0): y' = y$ où y est une fonction dérivable de la variable réelle x.

- **1.** Démontrer que l'unique fonction constante solution de l'équation différentielle (E_0) est la fonction nulle.
- **2.** Déterminer toutes les solutions de l'équation différentielle (E_0) .

On considère l'équation différentielle (E): y' = y - cos(x) - 3 sin(x)

où y est une fonction dérivable de la variable réelle x.

- **3.** La fonction h est définie sur \mathbb{R} par $h(x) = 2\cos(x) + \sin(x)$. On admet qu'elle est dérivable sur \mathbb{R} . Démontrer que la fonction h est solution de l'équation différentielle (E).
- **4.** On considère une fonction f définie et dérivable sur \mathbb{R} .

Démontrer que : « f est solution de (E) » est équivalent à «f - h est solution de (E_0) ».

- **5.** En déduire toutes les solutions de l'équation différentielle (E).
- **6.** Déterminer l'unique solution g de l'équation différentielle (E) telle que g(0)=0.
- 7. Calculer:

$$\int_{0}^{\frac{\pi}{2}} -2e^x + \sin(x) + 2\cos(x) \ dx$$

Exercice 8 (5 pts)

Un publicitaire souhaite imprimer le logo ci-contre sur un T-shirt.

Il dessine ce logo à l'aide des courbes de deux fonctions f et g définies sur $\mathbb R$ par :

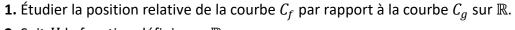
$$f(x) = e^{-x}(-\cos(x) + \sin(x) + 1)$$
 et $g(x) = -e^{-x}\cos(x)$

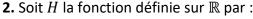
- **1.** Justifier que, pour tout $x \in \mathbb{R} : -e^{-x} \le f(x) \le 3e^{-x}$
- **2.** En déduire la limite de f en $+\infty$
- **3.** Montrer que pour tout x réel : $f'(x) = e^{-x}(2\cos(x) 1)$
- **4.** Dans cette question, on étudie la fonction f sur l'intervalle $[-\pi; \pi]$.
 - **a.** Déterminer le signe de f'(x), pour $x \in [-\pi; \pi]$
 - **b.** En déduire les variations de f sur $[-\pi; \pi]$.

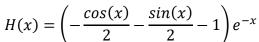
Partie B

On note \mathcal{C}_f et \mathcal{C}_g les représentations graphiques des fonctions f et g dans un repère orthonormé.

L'unité graphique est de 2 centimètres.







Montrer que H est une primitive de la fonction $x \mapsto (\sin x + 1)e^{-x}$ sur \mathbb{R} .

