Révisions bac n°6 : Intégrales

Les intégrales n'apparaissent souvent qu'en fin d'exercice. Ces exercices sont donc parfois des extraits de problèmes plus longs.

Exercice 1 (4 pts)

Dans cet exercice, si nécessaire, les valeurs numériques approchées seront données à 0,01 près. On considère la fonction f définie sur l'intervalle [0;4] par $f(x)=(3,6x+2,4)e^{-0,6x}-1,4$.

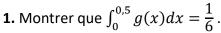
Partie A

- **1.** Justifier que pour tout nombre réel x de l'intervalle [0;4], on a $f'(x)=(-2,16x+2,16)e^{-0,6x}$.
- **2. a.** Étudier le signe de f'(x) sur l'intervalle [0; 4].
 - **b.** Dresser le tableau de variations de la fonction f sur cet intervalle. On donnera les valeurs numériques qui apparaissent dans le tableau de variations sous forme approchée.
- **3. a.** Vérifier que la fonction F définie par $F(x) = (-6x 14)e^{-0.6x} 1.4x$ est une primitive de la fonction f sur l'intervalle [0; 4].
 - **b.** Calculer la valeur exacte de $\int_0^4 f(x) dx$, puis en donner une valeur numérique approchée.

On note C_f la courbe représentative de la fonction f sur l'intervalle [0;4]. On considère la fonction g définie par $g(x) = 4x^2 - 4x + 1$.

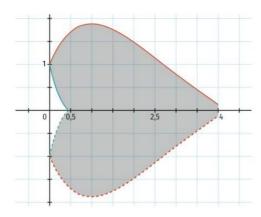
On note C_q la courbe représentative de cette g sur l'intervalle [0;0,5].

On a tracé ci-contre les courbes \mathcal{C}_f et \mathcal{C}_g dans un repère d'origine O, et en pointillée, les courbes obtenues par symétrique de \mathcal{C}_f et \mathcal{C}_g par rapport à l'axe des abscisses.



2. On considère le domaine du plan délimité par les courbes \mathcal{C}_f , \mathcal{C}_g , leurs courbes symétriques (en pointillés) ainsi que la droite d'équation x=4. Ce domaine apparaît grisé sur la figure ci-dessus.

Calculer une valeur approchée de l'aire, en unité d'aire, de ce domaine.



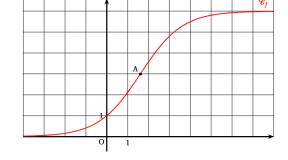
Exercice 2 (3 pts)

On considère la fonction f définie sur ${\mathbb R}$ par :

$$f(x) = \frac{6}{1 + 5e^{-x}}$$

On a représenté la courbe représentative \mathcal{C}_f de la fonction f .

- **1.** Montrer que le point A de coordonnées ($\ln 5$; 3) appartient à la courbe \mathcal{C}_f .
- **2.** Montrer que la droite d'équation y=6 est une asymptote à la courbe \mathcal{C}_f .



3. a. On admet que f est dérivable sur \mathbb{R} et on note f' sa fonction dérivée. Montrer que pour tout réel x, on a :

$$f'(x) = \frac{30e^{-x}}{(1+5e^{-x})^2}$$

- **b.** En déduire le tableau de variations complet de f sur \mathbb{R} .
- **4.** On considère une fonction F_k définie sur \mathbb{R} par $F_k(x) = k \ln(e^x + 5)$, où k est une constante réelle.
 - **a.** Déterminer la valeur du réel k de sorte sur F_k soit une primitive de f sur \mathbb{R} .
 - **b.** En déduire que l'aire, en unité d'aire, du domaine délimité par la courbe \mathcal{C}_f , l'axe des abscisses,

l'axe des ordonnées et la droite d'équation $x = \ln 5$ est égale à $6 \ln \left(\frac{5}{3}\right)$.

Exercice 3 (1 pt) L'affirmation suivante est-elle vraie ou fausse ? Votre réponse sera justifiée.

Affirmation : Une intégration par parties permet d'obtenir :

$$\int_{0}^{1} xe^{-x} dx = 1 - 2e^{-1}$$

Exercice 4 (3 pts)

On considère la suite (I_n) définie pour tout entier naturel n par :

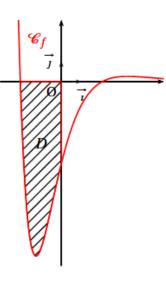
$$I_n = \int_{-2}^0 x^n e^{-x} \, dx$$

- **1.** Justifier que $I_0 = e^2 1$.
- 2. En utilisant une intégration par parties, démontrer l'égalité :

$$I_{n+1} = (-2)^{n+1}e^2 + (n+1)I_n$$

- **3.** En déduire les valeurs exactes de I_1 et I_2 .
- **4.** On considère la fonction f définie sur \mathbb{R} par $f(x) = (x^2 4)e^{-x}$.
- **a.** Déterminer le signe sur \mathbb{R} de la fonction f.
- **b.** On a représenté la courbe représentative \mathcal{C}_f de la fonction f dans un repère orthonormé. Soit D le domaine du plan délimité par la courbe \mathcal{C}_f , l'axe des abscisses et l'axe des ordonnées.

Calculer la valeur exacte, en unité d'aire, de l'aire S du domaine D.



Exercice 5 (3 pts)

On considère la fonction f définie pour tout nombre réel x par :

$$f(x) = (x^2 + 3x + 2)e^{-x}$$

1. Démontrer que la limite de la fonction f en $+\infty$ est égale à 0.

On admet par ailleurs que la limite de la fonction f en $-\infty$ est égale à $+\infty$.

- **2. a.** Vérifier que, pour tout nombre réel x, $f'(x) = (-x^2 x + 1)e^{-x}$
 - **b.** En déduire les variations de la fonction f sur \mathbb{R} .
- **3**. Expliquer pourquoi la fonction f est positive sur l'intervalle $[0; +\infty[$.
- **4.** On notera C_f la courbe représentative de d dans un repère orthogonal. On admet que la fonction F définie pour tout nombre réel x par $F(x) = (-x^2 5x 7)e^{-x}$ est une primitive de la fonction f.

Soit α un nombre réel positif. Déterminer l'aire $\mathcal{A}(\alpha)$, exprimée en unités d'aire, du domaine du plan délimité par l'axe des abscisses, la courbe \mathcal{C}_f et les droites d'équation x=0 et $x=\alpha$.

Exercice 6 (6 pts)

Partie A

On note f la fonction définie sur l'intervalle $]0; +\infty[$ par :

$$f(x) = \frac{1}{x^2} e^{\frac{1}{x}}$$

On note C sa courbe représentative dans un repère orthonormé $(0; \vec{t}; \vec{j})$.

- **1. a.** Déterminer la limite de la fonction f quand x tend vers 0.
 - **b.** Déterminer la limite de la fonction f quand x tend vers $+\infty$.
 - c. Quelles conséquences pour la courbe C peut-on déduire de ces deux résultats ?
- **2.** a. Démontrer que la fonction dérivée de la fonction f s'exprime, pour tout réel x > 0, par :

$$f'(x) = -\frac{1}{x^4} e^{\frac{1}{x}} (2x+1)$$

- **b.** Déterminer le signe de f' et en déduire le tableau de variations de f sur l'intervalle $]0; +\infty[$.
- **c.** Démontrer que l'équation f(x)=2 a une unique solution notée α sur l'intervalle $]0;+\infty[$. Donner une valeur approchée de α arrondie à 10^{-2} près.

Partie B : Étude d'une suite d'intégrales

Pour tout entier naturel $n \geq 2$, on considère l'intégrale I_n définie par

$$I_n = \int_{1}^{2} \frac{1}{x^n} e^{\frac{1}{x}} dx$$

- 1. Calculer I₂.
- **2.** a. Démontrer, à l'aide d'une intégration par parties, que pour tout entier naturel $n \ge 2$:

$$I_{n+1} = e - \frac{\sqrt{e}}{2^{n-1}} + (1-n)I_n$$

- **b.** Calculer I₃.
- **3. a.** Établir que, pour tout nombre réel x appartenant à l'intervalle [1; 2], on a :

$$0 \le \frac{1}{x^n} e^{\frac{1}{x}} \le \frac{e}{x^n}$$

b. En déduire un encadrement de I_n puis étudier la limite éventuelle de la suite (I_n) .

Exercice 7 (6 pts)

Pour tout entier naturel n, on considère les intégrales suivantes :

$$I_n = \int_0^{\pi} e^{-nx} \sin(x) dx \qquad J_n = \int_0^{\pi} e^{-nx} \cos(x) dx$$

- **1.** Calculer I₀.
- **2. a.** Justifier que, pour tout entier naturel n, on a $I_n \ge 0$.
 - **b.** Montrer que, pour tout entier naturel n, on a $I_{n+1} I_n \le 0$.
 - **c.** Déduire des deux questions précédentes que la suite (I_n) converge.
- **3. a.** Montrer que, pour tout entier naturel n, on a :

$$I_n \le \int\limits_0^\pi e^{-nx} dx$$

b. Montrer que, pour tout entier naturel $n \ge 1$, on a :

$$\int_{0}^{\pi} e^{-nx} dx = \frac{1 - e^{-n\pi}}{n}$$

- ${f c.}$ Déduire des deux questions précédentes la limite de la suite $(I_n).$
- **4. a.** En intégrant par parties l'intégrale I_n de deux façons différentes, établir les deux relations suivantes, pour tout entier naturel $n \ge 1$:

$$I_n = 1 + e^{-n\pi} - nJ_n$$
 $I_n = \frac{1}{n}J_n$

b. En déduire que, pour tout entier naturel $n \ge 1$, on a :

$$I_n = \frac{1 + e^{-n\pi}}{n^2 + 1}$$

5. On souhaite obtenir le rang n à partir duquel la suite (I_n) devient inférieure à 0,1.

Recopier et compléter la cinquième ligne du script Python ci-contre avec la commande appropriée.