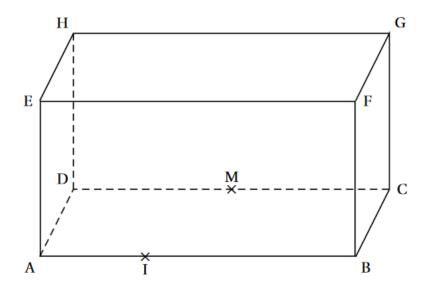
Révisions bac n°5 : Espace et orthogonalité

Exercice 1 (4 pts)

On considère le pavé droite ABCDEFGH tel que AB=3 et AD=AE=1 représenté ci-dessous.



On considère du point I du segment [AB] tel que $\overrightarrow{AB} = 3\overrightarrow{AI}$ et on appelle M le milieu du segment [CD]. On se place dans le repère orthonormé $(A; \overrightarrow{AI}; \overrightarrow{AD}; \overrightarrow{AE})$.

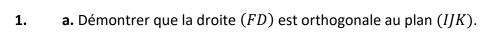
- **1.** Sans justifier, donner les coordonnées des points F, H et M.
- **2.** a. Montrer que le vecteur $\vec{n} \begin{pmatrix} 2 \\ 6 \\ 3 \end{pmatrix}$ est un vecteur normal au plan (HMF).
 - **b.** En déduire qu'une équation cartésienne du plan (HMF) est : 2x + 6y + 3z 9 = 0.
 - **c.** Le plan P dont une équation cartésienne est 5x + 15y 3z + 7 = 0 est-il parallèle au plan (HMF) ? Justifier la réponse.
- **3.** Déterminer une représentation paramétrique de la droite (DG).
- **4.** On appelle N le point d'intersection de la droite (DG) avec le plan (HMF). Déterminer les coordonnées du point N.
- **5.** Le point R de coordonnées $\left(3; \frac{1}{4}; \frac{1}{2}\right)$ est-il le projeté orthogonal du point G sur le plan (HMF) ? Justifier la réponse.

Exercice 2 (4 pts)

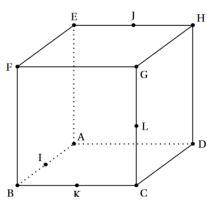
ABCDEFGH est un cube.

I est le milieu du segment [AB], J est le milieu du segment [EH], K est le milieu du segment [BC] et L est le milieu du segment [CG].

On munit l'espace du repère orthonormé $(A; \overrightarrow{AB}; \overrightarrow{AD}; \overrightarrow{AE})$.



- **b.** En déduire une équation cartésienne du plan (IJK). **2.** Déterminer une représentation paramétrique de la droite (FD).
- **3.** Soit M le point d'intersection de la droite (FD) et du plan (IJK). Déterminer les coordonnées du point M.
- **4.** Déterminer la nature du triangle IJK et calculer son aire.
- **5.** Calculer le volume du tétraèdre *FIJK*.
- **6.** Les droites (IJ) et (KL) sont-elles sécantes ?



Exercice 3 (4 pts)

L'espace est rapporté à un repère orthonormal $(0; \vec{\imath}; \vec{\jmath}; \vec{k})$.

Soit \mathcal{P} le plan d'équation 3x + y - z - 1 = 0 et \mathcal{D} la droite dont une représentation paramétrique est

$$\begin{cases} x = -t + 1 \\ y = 2t & \text{où } t \in \mathbb{R}. \\ z = -t + 2 \end{cases}$$

- **1. a.** Le point C(1; 3; 2) appartient-il au plan \mathcal{P} ? Justifier.
 - **b.** Démontrer que la droite $\mathcal D$ est incluse dans le plan $\mathcal P$.
- **2.** Soit \mathcal{P}' le plan passant par le point \mathcal{C} et orthogonal à la droite \mathcal{D} .
 - **a.** Déterminer une équation cartésienne du plan \mathcal{P}' .
 - **b.** Calculer les coordonnées du point I, point d'intersection du plan \mathcal{P}' et de la droite \mathcal{D} .
 - **c.** Montrer que $CI = \sqrt{3}$
- **3.** Soit t un nombre réel et M_t le point de la droite \mathcal{D} de coordonnées (-t+1;2t;-t+2)
 - **a.** Vérifier que pour tout nombre réel t, $CM_t^2 = 6t^2 12t + 9$
 - **b.** Montrer que CI est la valeur minimale de CM_t lorsque t décrit l'ensemble des nombres réels.

Exercice 4 (5 pts)

L'espace est rapporté à un repère orthonormal $(0; \vec{\imath}; \vec{\jmath}; \vec{k})$. On considère les plans \mathcal{P} et \mathcal{P}' d'équations respectives : x + y + z = 0 et 2x + 3y + z - 4 = 0.

1. Montrer que l'intersection des plans $\mathcal P$ et $\mathcal P'$ est la droite $\mathcal D$ dont une représentation paramétrique est :

$$\begin{cases} x = -4 - 2t \\ y = 4 + t \end{cases}$$
 , où t est un nombre réel. $z = t$

- **2.** Soit λ un nombre réel. On considère le plan \mathcal{P}_{λ} d'équation $(1-\lambda)(x+y+z)+\lambda(2x+3y+z-4)=0$.
- **a.** Vérifier que le vecteur $\vec{n}(1 + \lambda; 1 + 2\lambda; 1)$ est un vecteur normal au plan \mathcal{P}_{λ} .
- **b.** Donner une valeur du nombre réel λ pour laquelle les plans \mathcal{P} et \mathcal{P}_{λ} sont confondus.
- **c.** Existe-t-il un nombre réel λ pour lequel les plans $\mathcal P$ et $\mathcal P_\lambda$ sont perpendiculaies ?
- **3.** Déterminer une représentation paramétrique de la droite \mathcal{D}' , intersection des plans \mathcal{P} et \mathcal{P}_{-1} . Montrer que les droites \mathcal{D} et \mathcal{D}' sont confondues.
- **4.** On considère le point A(1; 1; 1). Déterminer la distance du point A à la droite \mathcal{D} .