Correction des exercices révisions bac n°4: études de fonction

Exercice 1 (16 pts)

1. (2 pts) $\lim_{t\to 0} -\frac{1}{2t} = -\infty$ et $\lim_{T\to -\infty} e^T = 0$ donc $\lim_{t\to 0} f(t) = 0$ par composition. $\lim_{t\to +\infty} -\frac{1}{2t} = 0$ et $\lim_{T\to 0} e^T = 1$ donc $\lim_{t\to +\infty} f(t) = 1$ par composition.

2. (2 pts) Pour t strictement positif, en posant $u(t) = -\frac{1}{2t}$, on a $u'(t) = \frac{1}{2t^2}$

Or $f(t) = e^{u(t)}$, donc

$$f'(t) = u'(t)e^{u(t)} = \frac{1}{2t^2} \times \exp\left(-\frac{1}{2t}\right) = \frac{\exp\left(-\frac{1}{2t}\right)}{2t^2}$$

3. (2 pts) L'exponentielle est positive sur \mathbb{R} , de même que $2t^2$ pour tout réel t.

Donc f'(t) est positif pour tout t > 0 et f est croissante sur]0; $+\infty[$.

4. (1 pt) Le signe de f''(t) ne dépend que de celui de (1-4t), qui est positif sur $]0; \frac{1}{4}]$ et négatif sur $[\frac{1}{4}; +\infty[$, donc f est convexe sur $]0; \frac{1}{4}]$ et concave sur $[\frac{1}{4}; +\infty[$.

(2 pts) Calculons:

$$f\left(\frac{1}{4}\right) = \exp\left(-\frac{1}{2 \times \frac{1}{4}}\right) = \exp\left(-\frac{1}{\frac{1}{2}}\right) = \exp(-2) = e^{-2}$$

donc le point d'inflexion a pour coordonnées $\left(\frac{1}{4}; e^{-2}\right)$

- **5.** (2 pts) D'après **4**, la fonction est concave sur $\left[\frac{1}{4}; +\infty\right[$ et $f\left(\frac{1}{4}\right) = e^{-2} \approx 0.14$ donc l'augmentation de la proportion de clients ayant adopté l'A2F ralentira quand la proportion aura atteint 14%. L'affirmation est donc fausse.
- **6. (3 pts)** f est continue car dérivable, strictement croissante sur]0; $+\infty[$, $\lim_{t\to 0} f(t)=0$ et $\lim_{t\to +\infty} f(t)=1$ D'après le théorème de la bijection, l'équation f(t) = 0.9 admet une unique solution t_0 sur l'intervalle $]0; +\infty[$. 7. (2 pts) L'équation admet une unique solution d'après la guestion précédente.

$$\exp\left(-\frac{1}{2t}\right) = 0.9 \Leftrightarrow -\frac{1}{2t} = \ln 0.9 \Leftrightarrow -2t = \frac{1}{\ln 0.9} \Leftrightarrow t = \frac{1}{-2\ln 0.9}$$

On a $t \approx 4,75$, ce qui correspond à 57 mois environ.

Exercice 2

- 1. On peut conjecturer une limite en traçant la courbe à la calculatrice. Sinon, on peut chercher la limite en $+\infty$. C'est une forme indéterminée, mais on factorise par x^2 pour trouver -2. Réponse C.
- **2.** Il est bien plus simple de dériver les fonctions F proposées pour trouver laquelle donne f. Si on prend celle de la **réponse D**, en faisant bien attention au fait qu'il s'agit d'une fonction de la forme e^u :

$$F'(x) = \frac{1}{2} \times 2xe^{x^2} = xe^{x^2} = f(x)$$

- 3. Il s'agit de la courbe de la fonction dérivée, donc il faut regarder son sens de variation pour en déduire la convexité de f. Elle semble croissante sur $]-\infty;4]$ puis décroissante sur $[4;+\infty[$, donc f serait convexe sur $]-\infty;4]$ puis concave sur $[4;+\infty[$. La seule réponse qui satisfait ces conditions est la **réponse C**.
- **4.** Les primitives considérées ont pour dérivée f. Ainsi, le sens de variation de ces primitives ne dépend que du signe de f. Or f est positive sur $\mathbb R$, donc toutes ses primitives sont croissantes sur $\mathbb R$. **Réponse A.** charly-piva.fr

Suite de la correction de l'exercice 2

- 5. Un petit coup de calculatrice peut nous aider. Sinon, la limite est 0 par croissances comparées. Réponse D.
- **6.** A nouveau, la calculatrice peut s'avérer utile (soit avec un solveur, soit en traçant la courbe). Sinon, on pose $X=e^x$ et l'équation devient $X^2+X-12=0$. Ce polynôme du second degré admet deux racines qui sont $X_1=3$ et $X_2=-4$. Il existe bien x_1 tel que $e^{x_1}=3$ (c'est $\ln(3)$, en fait) mais il n'existe pas de x_2 tel que $e^{x_2}=-4$. Donc l'équation n'admet qu'une seule solution, qui est $\ln(3)$. **Réponse C.**

Exercice 3 (16 pts)

Partie A

1. (2 pts) On dérive f avec la formule $\left(\frac{1}{v}\right)' = -\frac{v'}{v^2}$.

$$f'(x) = 3 \times \left(-\frac{-2e^{-2x}}{(1+e^{-2x})^2}\right) = \frac{6e^{-2x}}{(1+e^{-2x})^2}$$

Cette dérivée est un quotient d'exponentielle par un carré, donc positive pour tout x. f est strictement croissante sur \mathbb{R} .

2. (2 pts) La question ainsi que le graphique nous invitent à rechercher la limite en $+\infty$.

$$\lim_{x \to +\infty} e^{-2x} = 0 \text{ par composition, donc } \lim_{x \to +\infty} 1 + e^{-2x} = 1 \text{ puis par quotient, } \lim_{x \to +\infty} f(x) = 3.$$

Ceci démontre que la droite Δ d'équation y=3 est bien asymptote à la courbe C

3. (3 pts) On peut remarquer que f(0)=1,5 (ou calculer la limite en $-\infty$) pour nous aider à appliquer le théorème. f est continue, strictement croissante sur]0; $+\infty[$, f(0)=1,5 et $\lim_{x\to+\infty}f(x)=3$.

D'après le TVI, l'équation f(x) = 2,999 admet une unique solution α sur l'intervalle $]0; +\infty[$.

(1 pt) On a $4 \le \alpha \le 4{,}01$

Partie B.

- **1.** (1 pt) On sait que $f(x) \le 3$ pour tout x, donc $-f(x) \ge -3$ et $3 f(x) \ge 0$. Ainsi h est positive sur \mathbb{R} .
- **2.** (2 pts) On dérive H en espérant tomber sur h.

$$H'(x) = -\frac{3}{2} \times \frac{-2e^{-2x}}{1 + e^{-2x}} = \frac{3e^{-2x}}{1 + e^{-2x}}$$

or
$$h(x) = 3 - f(x) = 3 - \frac{3}{1 + e^{-2x}} = \frac{3(1 + e^{-2x})}{1 + e^{-2x}} - \frac{3}{1 + e^{-2x}} = \frac{3 + 3e^{-2x} - 3}{1 + e^{-2x}} = \frac{3e^{-2x}}{1 + e^{-2x}} = H'(x)$$

- **3a.** (1 pts) h étant positive, $\int_0^a h(x)dx$ correspond à l'aire du domaine compris entre l'axe des abscisses et la courbe de h, pour x compris entre 0 et a.
- **3b.** (2 pts) Ca tombe bien, la question 2 nous fournit une primitive de h.

$$\int_0^a h(x)dx = H(a) - H(0) = -\frac{3}{2}\ln(1+e^{-2a}) - \left(-\frac{3}{2}\ln(1+e^{-2\times 0})\right) = \frac{3}{2}(-\ln(1+e^{-2a}) + \ln(2)) = \frac{3}{2}\ln\left(\frac{2}{1+e^{-2a}}\right)$$

3c. (2 pts) Un dessin peut vraiment aider, ou bien utiliser la courbe fournie avec l'énoncé.

Le domaine décrit correspond à la partie du plan comprise entre l'axe des abscisses, la courbe de f et la droite Δ . Comme h(x)=3-f(x), cela correspond aussi à l'intégrale calculée $\int_0^a h(x)dx$, quand a tend vers $+\infty$. Or :

$$\lim_{a \to +\infty} 1 + e^{-2a} = 1 \quad \text{donc} \quad \lim_{a \to +\infty} \frac{3}{2} \ln \left(\frac{2}{1 + e^{-2a}} \right) = \frac{3}{2} \ln(2)$$

Exercice 4 (24 pts)

Partie A

1a. (3 pts) On a $\lim_{x \to +\infty} e^{-x} = 0$ donc $\lim_{x \to +\infty} 1 + e^{-x} = 1$ et ainsi $\lim_{x \to +\infty} \ln(1 + e^{-x}) = 0$. De plus, $\lim_{x \to +\infty} \frac{1}{3}x = +\infty$. Par somme, $\lim_{x \to +\infty} f(x) = +\infty$.

1b. (**2** pts) Soit *x* réel.

$$f(x) - \frac{1}{3}x = \ln(1 + e^{-x})$$

Or $e^{-x} > 0$ donc $1 + e^{-x} > 1$ et ainsi $\ln(1 + e^{-x}) > 0$. Donc \mathcal{C} est toujours au-dessus de(D).

(1 pt) Pour tracer (D), on part de l'origine du repère et on peut tracer une droite de vecteur directeur $\binom{3}{1}$.

1c. (4 pts)

$$f(x) = \ln(1 + e^{-x}) + \frac{1}{3}x$$

$$= \ln(1 + e^{-x}) + \frac{1}{3}x + \frac{2}{3}x - \frac{2}{3}x$$

$$= \ln(1 + e^{-x}) + x - \frac{2}{3}x$$

$$= \ln(1 + e^{-x}) + \ln(e^{x}) - \frac{2}{3}x$$

$$= \ln(e^{x}(1 + e^{-x})) - \frac{2}{3}x$$

$$= \ln(e^{x} + 1) - \frac{2}{3}x$$

1d. (2 pts) On a $\lim_{x \to -\infty} e^x = 0$ donc $\lim_{x \to -\infty} e^x + 1 = 1$ et ainsi $\lim_{x \to +\infty} \ln(e^x + 1) = 0$. De plus, $\lim_{x \to -\infty} -\frac{2}{3}x = +\infty$. Par somme, $\lim_{x \to -\infty} f(x) = +\infty$.

2a. (3 pts) La formule à trouver suggère d'utiliser le résultat de la question 1c.

On utilise la forme de la dérivée d'une fonction de la forme $\ln u$. Pour tout x réel

$$f'(x) = \frac{e^x}{e^x + 1} - \frac{2}{3} = \frac{3e^x}{3(e^x + 1)} - \frac{2(e^x + 1)}{3(e^x + 1)} = \frac{3e^x - 2e^x - 2}{3(e^x + 1)} = \frac{e^x - 2}{3(e^x + 1)}$$

2b. (2 pts) Pour tout x réel, le dénominateur de cette fraction est positif

$$e^x - 2 > 0 \Leftrightarrow e^x > 2 \Leftrightarrow x > \ln 2$$

Ainsi, f est croissante sur $[\ln 2; +\infty[$ et décroissante sur $]-\infty; \ln 2]$. (on peut se rassurer en regardant l'annexe)

Partie B 1. (2 pts) Il s'agit de calculer :

$$f'(0) = \frac{e^0 - 2}{3(e^0 + 1)} = -\frac{1}{6}$$

(1 pt) On peut tracer la droite passant par le point de \mathcal{C} d'abscisse 0, et de vecteur directeur $\binom{-6}{1}$.

2. (4 pts) Soit α l'abscisse de M, l'abscisse de N est donc $-\alpha$. On calcule le coefficient directeur de (MN):

Pour se faciliter la vie (on sait qu'il va falloir se débarasser de \ln), on utilise l'expression de départ pour f(a), et l'expression de la question **1c** pour f(-a).

$$\frac{y_N - y_M}{x_N - x_M} = \frac{f(-a) - f(a)}{-a - a} = \frac{\ln(e^{-a} + 1) - \frac{2}{3} \times (-a) - (\ln(1 + e^{-a}) + \frac{1}{3}a)}{-2a}$$
$$= \frac{\ln(e^{-a} + 1) + \frac{2}{3}a - \ln(1 + e^{-a}) - \frac{1}{3}a}{-2a} = \frac{\frac{1}{3}a}{-2a} = -\frac{1}{6}$$

Ainsi, (MN) est bien parallèle à (T).

Exercice 5 (24 pts)

Partie A

1. (2 pts) Pour tout x > 0:

$$f'(x) = 1 + \frac{1}{x}$$

f' étant positive, f est croissante sur $]0; +\infty[$.

2. (3 pts) f est continue car dérivable, strictement croissante sur $]0; +\infty[$, $\lim_{x\to 0} f(x) = -\infty$ et $\lim_{x\to +\infty} f(x) = +\infty$ D'après le théorème de la bijection, l'équation f(x) = 0 admet une unique solution α sur l'intervalle $]0; +\infty[$.

3. (2 pts)
$$f\left(\frac{1}{2}\right) = \frac{1}{2} + \ln\left(\frac{1}{2}\right) = \frac{1}{2} - \ln 2 < 0$$
 et $f(1) = 1 + \ln(1) = 1 > 0$. Ainsi, $\frac{1}{2} \le \alpha \le 1$

(on aurait pu faire ce raisonnement plutôt que de calculer les limites en 1b)

Partie B

1a. (3 pts) Notez que la fonction g n'est pas vraiment un « quotient de fonctions ». Pour tout x > 0:

$$g'(x) = \frac{1}{5} \left(4 - \frac{1}{x} \right) = \frac{1}{5} \left(\frac{4x}{x} - \frac{1}{x} \right) = \frac{1}{5} \left(\frac{4x - 1}{x} \right)$$

Or $4x - 1 > 0 \Leftrightarrow x > \frac{1}{4}$ donc g est décroissante sur]0; 1/4] puis croissante sur $[\frac{1}{4}; +\infty[$

1b. (3 pts)

$$g\left(\frac{1}{2}\right) = \frac{4 \times \frac{1}{2} - \ln\frac{1}{2}}{5} = \frac{2 + \ln 2}{5} \in \left[\frac{1}{2}; 1\right]$$
$$g(1) = \frac{4 \times 1 - \ln 1}{5} = \frac{4}{5} \in \left[\frac{1}{2}; 1\right]$$

g étant monotone sur $[\frac{1}{2};1]$, pour tout nombre réel x appartenant à l'intervalle $[\frac{1}{2};1]$, $g(x) \in [\frac{1}{2};1]$.

1c. (3 pts) Pour tout x > 0

$$g(x) = x \Leftrightarrow \frac{4x - \ln x}{5} = \frac{5x}{5} \Leftrightarrow \frac{4x - \ln x - 5x}{5} = 0 \Leftrightarrow \frac{-x - \ln x}{5} = 0 \Leftrightarrow \frac{-f(x)}{5} = 0 \Leftrightarrow f(x) = 0$$

2a. (2 pts) C'est une récurrence simple qui utilise la croissance de g et la question 1b.

2b. (3 pts) On vient de montrer que (u_n) est croissante et majorée, donc elle converge.

g étant continue, d'après le théorème du point fixe, la limite ℓ vérifie $g(\ell)=\ell$, mais d'après **1c**, on a alors $f(\ell)=0$,c'est-à-dire que ℓ est la solution α de l'équation (E).

3a. (2 pts) On trouve $u_{10} \approx 0.567124$

3b. (1 pt) On en déduit que $0.567 \le \alpha \le 0.568$.