Révisions bac n°1: suites

Cette fiche de révision fait l'impasse sur les exercices de suites « arithmético-géométriques » (de la forme $u_{n+1} = au_n + b$) qui se ressemblent généralement tous et sont les plus faciles. Vous pouvez en trouver dans le DS ou les exercices de fin de chapitre.

Exercice 1 (6 pts) Une suite récurrente et plusieurs calculs de fractions.

On considère la suite (u_n) définie pour tout $n \ge 0$ par :

$$\begin{cases} u_0 = 5 \\ u_{n+1} = 3 - \frac{10}{u_n + 4} \end{cases}$$

Partie A

- **1.** Déterminer la valeur exacte de u_1 et u_2 .
- **2.** Démontrer par récurrence que, pour tout entier naturel $n, u_n \ge 1$.
- 3. Démontrer que, pour tout entier naturel n, $u_{n+1} u_n = \frac{(1 u_n)(u_n + 2)}{u_n + 4}$
- **4.** En déduire le sens de variation de la suite (u_n) .
- **5.** Justifier que la suite (u_n) converge.

Partie B

On considère la suite (v_n) définie pour tout entier naturel n par $v_n = \frac{u_n - 1}{u_n + 2}$

- **1. a.** Démontrer que (v_n) est une suite géométrique dont on déterminera la raison et le premier terme v_0 .
- **b.** Exprimer v_n en fonction de n et en déduire que, pour tout entier naturel $n, v_n \neq 1$.
- **2.** Démontrer que, pour tout entier naturel n, $u_n = \frac{2v_n + 1}{1 v_n}$
- **3.** En déduire la limite de la suite (u_n) .

Partie C

On considère l'algorithme ci-contre.

- 1. Après exécution de l'algorithme, quelle valeur est contenue dans la variable n?
- **2.** A l'aide des parties A et B, interpréter cette valeur.

$$u \leftarrow 5$$

 $n \leftarrow 0$
Tant que $u \ge 1,01$, faire:
 $n \leftarrow n+1$
 $u \leftarrow 3 - \frac{10}{u+4}$
Fin Tant que

Exercice 2 (3 pts) Étude de fonction, puis application à une suite récurrente.

Soit (u_n) la suite définie par : $\begin{cases} u_0=1\\ u_{n+1}=u_n-\ln(u_n^2+1) \end{cases}$ pour tout entier naturel n.

Partie A

Soit f la fonction définie sur $\mathbb R$ par :

$$f(x) = x - \ln(x^2 + 1)$$

- **1.** Résoudre dans \mathbb{R} l'équation f(x) = x.
- **2.** Étudier le sens de variation de la fonction f sur l'intervalle [0; 1]. En déduire que si $x \in [0; 1]$ alors $f(x) \in [0; 1]$.

Partie B

- **1.** Démontrer par récurrence que, pour tout entier $n \ge 0$, $u_n \in [0; 1]$.
- **2.** Étudier le sens de variation de la suite (u_n) .
- **3.** Démontrer que la suite (u_n) est convergente. Déterminer sa limite en justifiant.

Exercice 3 (5 pts) Un exercice classique avec une suite récurrente qui n'utilise pas de fonction définie à part.

On considère la suite numérique (u_n) définie sur $\mathbb N$ par $u_0=2$ et, pour tout entier naturel n,

$$u_{n+1} = -\frac{1}{2}u_n^2 + 3u_n - \frac{3}{2}$$

Partie A : conjecture

- **1.** Calculer les valeurs exactes de u_1 et u_2 .
- **2.** Donner une valeur approchée à 10^{-5} près de u_3 et u_4 .
- **3.** Conjecturer le sens de variation et la convergence de la suite (u_n) .

Partie B: validation des conjectures

On considère la suite numérique (v_n) définie, pour tout entier naturel n, par $v_n=u_n-3$.

- **1.** Montrer que, pour tout entier naturel n, $v_{n+1} = -\frac{1}{2}v_n^2$
- **2.** Démontrer par récurrence que pour tout entier naturel n, $-1 \le v_n \le 0$.
- **3. a.** Démontrer que, pour tout entier naturel n, $v_{n+1} v_n = -v_n \left(\frac{1}{2}v_n + 1\right)$
- **b.** En déduire le sens de variation de la suite (v_n) .
- **4.** Pourquoi peut-on affirmer que la suite (v_n) converge ?
- **5.** On note ℓ la limite de la suite (v_n) et on admet que ℓ appartient à l'intervalle [-1;0]

et vérifie l'égalité $\ell = -\frac{1}{2}\ell^2$. Déterminer la valeur de ℓ .

6. Les conjectures de la partie A sont-elles validées ?

Exercice 4 (4 pts)

Un calcul de limite original, qui utilise la fonction ln.

On considère la suite (u_n) définie, pour tout entier naturel n non nul, par :

$$u_n = \left(1 + \frac{1}{n}\right)^n$$

1. On considère la fonction f définie sur $[0; +\infty[$ par :

$$f(x) = x - \ln(1+x)$$

- **a.** En étudiant les variations de la fonction , montrer que, pour tout réel x positif ou nul, $\ln(1+x) \le x$.
- **b.** En déduire que, pour tout entier naturel n non nul, $\ln(u_n) \le 1$.
- **c.** La suite (u_n) peut-elle avoir pour limite $+\infty$?
- **2.** On considère la suite (v_n) définie, pour tout entier naturel n non nul, par : $v_n = \ln(u_n)$.
- **a.** On pose $x = \frac{1}{n}$. Exprimer v_n en fonction de x.
- **b.** Que vaut $\lim_{x\to 0} \frac{\ln(1+x)}{x}$? Aucune justification n'est demandée. Calculer $\lim_{n\to +\infty} v_n$.
- **c.** En déduire que la suite (u_n) est convergente et déterminer sa limite.

Exercice 5 (5 pts) Début classique avec des calculs de fractions un peu longs, puis on arrive vers une méthode géométrique pour approcher $\sqrt{11}$.

On considère la suite (u_n) définie par $u_0 = 5$ et pour tout entier naturel n,

$$u_{n+1} = \frac{1}{2} \left(u_n + \frac{11}{u_n} \right)$$

On admet que la suite (u_n) est bien définie.

Partie A – Étude de la suite (u_n)

- **1.** Donner u_1 et u_2 sous forme de fractions irréductibles.
- **2.** On considère la fonction f définie sur l'intervalle $]0; +\infty[$ par :

$$f(x) = \frac{1}{2} \left(x + \frac{11}{x} \right)$$

Démontrer que la fonction f est croissante sur l'intervalle $[\sqrt{11}; +\infty[$.

- **3.** Démontrer par récurrence que pour tout entier naturel n, on a $u_n \ge u_{n+1} \ge \sqrt{11}$.
- **4.** En déduire que la suite (u_n) converge vers une limite réelle. On note a cette limite.
- **5.** Après avoir déterminé et résolu une équation dont a est solution, préciser la valeur exacte de a.

Partie B - Application géométrique

Pour tout entier n, on considère un rectangle R_n d'aire 11 dont la largeur est notée l_n et la longueur L_n . La suite (L_n) est définie par $L_0=5$ et pour tout entier naturel n,

$$L_{n+1} = \frac{L_n + l_n}{2}$$

- **a.** Expliquer pourquoi $l_0 = 2,2$.
 - **b.** Établir que pour tout entier naturel n,

$$l_n = \frac{11}{L_n}$$

- **2.** Vérifier que la suite (L_n) correspond à la suite (u_n) de la partie A.
- **3.** Montrer que pour tout entier naturel n, on a $l_n \leq \sqrt{11} \leq L_n$.
- **4.** On admet que les deux suites (L_n) et (l_n) convergent toutes les deux vers $\sqrt{11}$. Interpréter géométriquement ce résultat dans le contexte de la **partie B**.
- 5. Voici un script, écrit en langage Python, relatif aux suites étudiées dans cette partie :

```
def heron(n) :
    L = 5
    1 = 2.2
    for in in range(n) :
        L = (L+1) / 2
        1 = 11 / L
    return round(1,6), round(L,6)
```

On rappelle que la fonction Python round(x, k) renvoie une version arrondie du nombre x avec k décimales.

- **a.** Si l'utilisateur tape heron(3) dans une console d'exécution Python, qu'obtient-il comme valeurs de sortie pour l et L?
- **b.** Donner une interprétation de ces deux valeurs.