Exercice 1 20 points

1a. (1 pt) On remarque d'abord que $\lim_{x \to +\infty} -x^2 - 2x = -\infty$ par somme.

(1 pt) De plus, $\lim_{X\to -\infty} e^X = 0$ donc par composition, $\lim_{X\to +\infty} f(x) = 0$.

1b. (1 pt) On en déduit que C_f admet une asymptote horizontale d'équation y = 0.

2a. (2 pts) Si $u(x) = -x^2 - 2x$, alors u'(x) = -2x - 2. Ainsi :

$$f'(x) = (-2x - 2)e^{-x^2 - 2x} = -2(x + 1)e^{-x^2 - 2x}$$

2b. (2 pts) Le signe de f'(x) est l'opposé de celui de (x + 1).

Donc f'(x) est positif sur $]-\infty;-1]$ puis négatif sur $[-1;+\infty[$.

(1 pt) Ainsi f est croissante sur $]-\infty;-1]$ puis décroissante sur $[-1;+\infty[$.

(1 pt) Le maximum de f est $f(-1) = e^{-(-1)^2 - 2 \times (-1)} = e^{-1+2} = e$

3a. (3 pts) On dérive à nouveau f, cette fois comme un produit.

On pose u(x) = -2(x+1) et donc u'(x) = -2, et $v(x) = e^{-x^2-2x}$ donc $v'(x) = (-2x-2)e^{-x^2-2x}$.

$$f''(x) = -2e^{-x^2 - 2x} + -2(x+1)(-2x-2)e^{-x^2 - 2x}$$

$$f''(x) = e^{-x^2 - 2x}(-2 + 4x^2 + 4x + 4x + 4)$$

$$f''(x) = e^{-x^2 - 2x}(4x^2 + 8x + 2)$$

3b. (3 pts) Le signe de f''(x) ne dépend que de $(4x^2 + 8x + 2)$ qui est un polynôme du second degré.

Son discriminant est $\Delta = 8^2 - 4 \times 4 \times 2 = 32$ et donc ses racines sont :

$$x_1 = \frac{-8 - \sqrt{32}}{2 \times 4} = -1 - \frac{\sqrt{2}}{2}$$
 $x_2 = \frac{-8 + \sqrt{32}}{2 \times 4} = -1 + \frac{\sqrt{2}}{2}$

Ainsi, f est concave sur l'intervalle :

$$\left[-1-\frac{\sqrt{2}}{2};-1+\frac{\sqrt{2}}{2}\right]$$

4a. (1 pt) La dérivée de f s'annule en -1, donc C_f admet une tangente horizontale en -1.

4b. (2 pts) On calcule d'abord $f(0) = e^{-0^2 - 2 \times 0} = e^0 = 1$ et $f'(0) = -2(0+1)e^{-0^2 - 2 \times 0} = -2e^0 = -2$ L'équation de (T) est :

$$y = f'(0)(x - 0) + f(0) = -2x + 1$$

4c. (2 pts) D'après 3b, f est convexe sur $[0; +\infty[$.

Donc sur cet intervalle, la courbe C_f est au-dessus de la tangente (T).

Proposition 1 (3 pts)

$$\begin{cases} -6 = 2t \\ -2 = 1 + t \\ -14 = -5 + 3t \end{cases} \Leftrightarrow \begin{cases} 2t = -6 \\ t = -3 \\ 3t = -9 \end{cases}$$
 et ces trois équations fournissent $t = -3$, donc M est le point de (d) de paramètre -3 . Vrai.

Proposition 2 (3 pts)

(d) est dirigée par
$$\vec{u} \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$$
 et (AB) est dirigée par $\overrightarrow{AB} \begin{pmatrix} 3-1 \\ 0-1 \\ -1-0 \end{pmatrix} = \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix}$

Ces deux vecteurs ne sont pas colinéaires $\left(\frac{2}{2} \neq -\frac{1}{1}\right)$ donc (d) et (AB) ne sont pas parallèles. <u>Faux</u>.

Proposition 3 (4 pts)

(AB) a pour représentation paramétrique :
$$\begin{cases} x = 1 + 2t' \\ y = 1 - t' \end{cases}$$
 où $t' \in \mathbb{R}$

(AB) a pour représentation paramétrique :
$$\begin{cases} x = 1 + 2t' \\ y = 1 - t' \end{cases}$$
 où $t' \in \mathbb{R}$
$$z = -t'$$
 Cherchons un éventuel point d'intersection de (d) et (AB) :
$$\begin{cases} 2t = 1 + 2t' \\ 1 + t = 1 - t' \\ -5 + 3t = -t' \end{cases}$$

La deuxième équation fournit
$$t=-t'$$
. Ainsi :
$$\begin{cases} 2(-t')=1+2t' \\ t=-t' \\ -5+3(-t')=-t' \end{cases} \Leftrightarrow \begin{cases} 4t'=-1 \\ t=-t' \\ 2t'=-5 \end{cases} \Leftrightarrow \begin{cases} t'=-\frac{1}{4} \\ t=-t' \\ t'=-\frac{5}{2} \end{cases}$$

On about \dot{a} une contradiction, donc (AB) et (d) sont non-coplanaires. Faux

Proposition 4 (4 pts)

Le vecteur
$$\overrightarrow{AN}$$
 a pour coordonnées $\begin{pmatrix} 11-1\\-1-1\\-4-0 \end{pmatrix} = \begin{pmatrix} 10\\-2\\-4 \end{pmatrix}$

Essayons de déterminer s'il existe a et b tels que $\overrightarrow{AN} = a\overrightarrow{AB} + b\overrightarrow{AC}$

On a
$$\overrightarrow{AB} \begin{pmatrix} 3-1\\0-1\\-1-0 \end{pmatrix} = \begin{pmatrix} 2\\-1\\-1 \end{pmatrix}$$
 et $\overrightarrow{AC} \begin{pmatrix} 7-1\\1-1\\-2-0 \end{pmatrix} = \begin{pmatrix} 6\\0\\-2 \end{pmatrix}$

L'égalité
$$\overrightarrow{AN} = a\overrightarrow{AB} + b\overrightarrow{AC}$$
 devient :
$$\begin{cases} 10 = 2a + 6b \\ -2 = -a \\ -4 = -a - 2b \end{cases}$$

La deuxième égalité fournit a = 2. Ainsi :

$$\begin{cases} 10 = 2 \times 2 + 6b \\ a = 2 \end{cases} \Leftrightarrow \begin{cases} b = 1 \\ a = 2 \\ b = 1 \end{cases}$$

Ainsi, on trouve $\overrightarrow{AN} = 2\overrightarrow{AB} + \overrightarrow{AC}$ et les points A, B, C et N sont coplanaires. Vrai.

Proposition 5 (3 pts)

On doit avoir $4x - 10 \ge 0 \iff x \ge 2.5$. Donc f n'est définie que sur $[2.5; +\infty]$. Faux.

Proposition 6 (3 pts)

On pose u(x) = 4x - 10 et ainsi u'(x) = 4. La dérivée de $f = \sqrt{u}$ a pour expression :

$$f'(x) = \frac{u'(x)}{2\sqrt{u(x)}} = \frac{4}{2\sqrt{4x - 10}} = \frac{2}{\sqrt{4x - 10}}$$

En simplifiant par 2, on retrouve la bonne expression. Vrai.

A1. (2 pts)

$$u_1 = -\frac{1}{2} \times 2^2 + 3 \times 2 - \frac{3}{2} = -2 + 6 - \frac{3}{2} = -\frac{4}{2} + \frac{12}{2} - \frac{3}{2} = \frac{5}{2}$$

$$u_2 = -\frac{1}{2} \times \left(\frac{5}{2}\right)^2 + 3 \times \frac{5}{2} - \frac{3}{2} = -\frac{25}{8} + \frac{15}{2} - \frac{3}{2} = -\frac{25}{8} + \frac{60}{8} - \frac{12}{8} = \frac{23}{8}$$

A2. (1 pt) $u_3 \approx 2,99219$

A3. (1 pt) La suite (u_n) semble croissante et convergente vers 3.

B1. (1 pt) $v_0 = u_0 - 3 = 2 - 3 = -1$

B2. (2 pts) Soit $n \in \mathbb{N}$. On calcule v_{n+1} et au vu de la réponse attendue, on essaye de factoriser par $-\frac{1}{2}$

$$v_{n+1} = u_{n+1} - 3 = -\frac{1}{2}u_n^2 + 3u_n - \frac{3}{2} - 3 = -\frac{1}{2}u_n^2 + 3u_n - \frac{9}{2} = -\frac{1}{2}(u_n^2 - 6u_n + 9) = -\frac{1}{2}(u_n - 3)^2 = -\frac{1}{2}v_n^2 + 3u_n - \frac{9}{2}v_n^2 = -\frac{1}{2}v_n^2 + 3u_n^2 + 3u_n^$$

B3. (3 pts) Initialisation: pour n = 0, on a $v_0 = -1$ donc on a bien $-1 \le v_0 \le 0$.

<u>Hérédité</u> : supposons que $-1 \le v_n \le 0$.

Alors $1 \ge v_n^2 \ge 0$ car la fonction carré est décroissante sur [-1; 0].

Ensuite $-\frac{1}{2} \le -\frac{1}{2}v_n^2 \le 0$, donc $-1 \le v_{n+1} \le 0$.

<u>Conclusion</u>: pour tout entier naturel n, −1 ≤ v_n ≤ 0.

B4a. (1 pt) La présence du $\frac{1}{2}$ nous invite à utiliser la question 2.

$$v_{n+1} - v_n = -\frac{1}{2}v_n^2 - v_n = -v_n(\frac{1}{2}v_n + 1)$$

B4b. (2 pts) D'après 3, v_n est négatif donc $-v_n$ est positif.

Par contre, comme $-1 \le v_n \le 0$, on a $-\frac{1}{2} \le \frac{1}{2}v_n \le 0$ donc $\frac{1}{2} \le \frac{1}{2}v_n + 1 \le 1$, donc $\left(\frac{1}{2}v_n + 1\right)$ est positif.

Ainsi $v_{n+1} - v_n$ est positif. La suite (v_n) est croissante.

B4c. (1 pt) (v_n) est croissante et majorée par 0, donc elle converge.

B5a. (2 pts) (v_n) est convergente et la fonction de récurrence de (v_n) définie par $f(x) = -\frac{1}{2}x^2$ est continue, donc d'après le théorème du point fixe, la limite ℓ vérifie $\ell = f(\ell)$, soit $\ell = -\frac{1}{2}\ell^2$.

B5b. (2 pts)

$$\ell = -\frac{1}{2}\ell^2 \Leftrightarrow \frac{1}{2}\ell^2 + \ell = 0 \Leftrightarrow \ell\left(\frac{1}{2}\ell + 1\right) = 0$$

Cette équation produit nul admet deux solutions : $\ell = 0$ ou $\ell = -2$.

Or pour tout n entier naturel, $-1 \le v_n \le 0$, donc ℓ ne peut pas être égal à -2. Ainsi $\ell = 0$.

B6. (2 pts) On a pour tout n entier naturel, $u_n = v_n + 3$.

Or (v_n) est croissante donc (u_n) aussi, et v_n converge vers 0 donc u_n converge vers 0+3=3. Les conjectures sont vérifiées.

A1. (1 pt) *g* a pour dérivée $g'(x) = e^x - 1$.

(1 pt) Il faut étudier le signe de cette expression. Or $g'^{(x)} \ge 0 \Leftrightarrow e^x - 1 \ge 0 \Leftrightarrow e^x \ge 1$ et pour x positif, e^x est toujours supérieur ou égal à 1. Donc g'(x) est négatif sur $]-\infty$; 0] puis positif sur $[0;+\infty[$.

(1 pt) Ainsi, g est décroissante sur $]-\infty$; 0] puis croissante sur $[0;+\infty[$.

Son minimum est $g(0) = e^0 - 0 - 1 = 0$.

A2. (1 pt) Le minimum de g est 0, donc g est positive sur tout son ensemble de définition.

A3. (1 pt) On en déduit que pour tout x réel, $e^x - x - 1 \ge 0 \Leftrightarrow e^x - x \ge 1$.

Ceci prouve que pour tout x réel, $e^x - x$ est strictement positif.

B1. (1 pt) On factorise par x:

$$f(x) = \frac{x \times 1}{x\left(\frac{e^x}{x} - 1\right)} = \frac{1}{\frac{e^x}{x} - 1}$$

(1 pt) En $+\infty$, $\lim_{x\to+\infty} \frac{e^x}{x} = +\infty$ par croissances comparées.

(1 pt) Ainsi, par quotient, $\lim_{x \to +\infty} f(x) = 0$.

(1 pt) En $-\infty$, $\lim_{x\to -\infty} \frac{e^x}{x} = 0$ par quotient. À nouveau par quotient, $\lim_{x\to +\infty} f(x) = -1$. **B2. (2 pts)** On en déduit que la courbe C_f admet deux asymptotes horizontales.

Leurs équations sont y = 0 et y = -1.

B3. (3 pts)

$$f'(x) = \frac{1(e^x - x) - x(e^x - 1)}{(e^x - x)^2} = \frac{e^x - x - xe^x + x}{(e^x - x)^2} = \frac{e^x(1 - x)}{(e^x - x)^2}$$

B4. (1 pt) Le signe de f'(x) ne dépend que de (1-x).

Ainsi, f'(x) est positif sur $]-\infty$; 1] puis négatif sur $[1;+\infty[$.

(1 pt) f est donc croissante sur $]-\infty;1]$ puis décroissante sur $[1;+\infty[$. Son maximum est :

$$f(1) = \frac{1}{e^1 - 1} = \frac{1}{e - 1}$$

B5a. (3 pts) f est continue, strictement décroissante sur $[1; +\infty[$

On a $f(1) = \frac{1}{e-1} > 0.1$ et $\lim_{x \to +\infty} f(x) = 0$, or 0.1 appartient à l'intervalle $[0.1; \frac{1}{e-1}]$.

Donc d'après le corollaire du TVI, l'équation f(x) = 0 admet une unique solution α sur $[1; +\infty[$.

B5b. (1 pt) On obtient $\alpha \approx 3.71$.