Exercice 1 12 points

- **1. (2 pts)** On a B(6; 4; 0), E(0; 4; 4), F(6; 4; 4) et G(6; 0; 4).
- **2.** (3 pts) Le rectangle *EFGH*, base de la pyramide, a une aire de $6 \times 4 = 24$ unités d'aire.

De plus, le point S ayant pour coordonnées (3; 2; 6), la hauteur de la pyramide est de 2 unités de longueur.

$$V_{pyramide} = \frac{1}{3} \times 24 \times 2 = 16$$

Or $V_{pav\acute{e}} = 6 \times 4 \times 4 = 96$, donc $V_{maison} = 16 + 96 = 112$.

Or $112 = 7 \times 16 = V_{pyramide}$, le volume de la pyramide représente bien le septième du volume total de la maison.

3a. (1 pt)
$$\overrightarrow{BS} \begin{pmatrix} 3-6\\2-4\\6-0 \end{pmatrix} = \begin{pmatrix} -3\\-2\\6 \end{pmatrix}$$

3b. (1 pt) Ainsi, la représentation paramétrique de la droite (BS) est, en partant du point B, $\begin{cases} x = 6 - 3t \\ y = 4 - 2t \\ z = 6t \end{cases}$

4a. (2 pts) La droite (*AF*) est dirigée par le vecteur $\begin{pmatrix} 3 \\ 0 \\ 2 \end{pmatrix}$, et la droite (*d*) par le vecteur $\begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$.

Ces deux vecteurs ne sont pas colinéaires, donc les droites (d) et (AF) ne sont pas parallèles.

4b. (3 pts) Soient *t* et *s* deux réels.

$$\begin{cases} 3t = -4 + s \\ 4 = 8 - 2s \\ 2t = 2 + s \end{cases} \Leftrightarrow \begin{cases} 3t = -4 + s \\ 2s = 8 - 4 \\ 2t = 2 + s \end{cases} \Leftrightarrow \begin{cases} 3t = -4 + 2 \\ s = 2 \\ 2t = 2 + s \end{cases} \Leftrightarrow \begin{cases} 3t = -4 + 2 \\ s = 2 \\ 2t = 2 + 2 \end{cases} \Leftrightarrow \begin{cases} 3t = -2 \\ s = 2 \\ 2t = 4 \end{cases} \Leftrightarrow \begin{cases} t = -\frac{2}{3} \\ s = 2 \\ t = 2 \end{cases}$$

On aboutit à une contradiction, avec deux valeurs de t différentes. Les droites ne sont pas sécantes, et l'oiseau ne passera pas par la droite (AF), fort heureusement pour son intégrité physique.

Exercice 2 20 points

1. (2 pts) $u_1 = 0.008u_0(200 - u_0) = 0.008 \times 40 \times (200 - 40) = 0.008 \times 40 \times 160 = 51.2$ D'après le modèle, il y aura environ 51 oiseaux dans la colonie au début de l'année 2025.

2. (3 pts)

$$f(x) = x$$

$$\Leftrightarrow 0.008x(200 - x) = x$$

$$\Leftrightarrow 1.6x - 0.008x^{2} = x$$

$$\Leftrightarrow 1.6x - x - 0.008x^{2} = 0$$

$$\Leftrightarrow 0.6x - 0.008x^{2} = 0$$

$$\Leftrightarrow x(0.6 - 0.008x) = 0$$

Il s'agit d'une équation produit nul, la première solution étant x = 0, et la deuxième est la solution de $0.6 - 0.008x = 0 \Leftrightarrow x = -\frac{0.6}{-0.008} = 75$.

3a. (3 pts) Pour x appartenant à [0; 100], on a $f(x) = 0.008x(200 - x) = 1.6x - 0.008x^2$ Ainsi, on a f'(x) = 1.6 - 0.016x.

$$0r 1,6 - 0,016x \ge 0 \Leftrightarrow 1,6 \ge 0,016x \Leftrightarrow x \le \frac{1,6}{0,016} \Leftrightarrow x \le 100$$

Ainsi, f'(x) est positif pour tout x de l'intervalle [0; 100] et f est croissante sur cet intervalle.

(1 pt) On a f(0) = 0 et $f(100) = 0.008 \times 100 \times (200 - 100) = 0.8 \times 100 = 80$.

3b. (4 pts) On remarque que pour tout entier naturel n, on a $u_{n+1} = f(u_n)$

<u>Initialisation</u>: pour n=0, on a $u_0=40$ et $u_1=51,2$, ainsi $0 \le u_0 \le u_1 \le 100$.

<u>Hérédité</u> : soit n entier naturel, supposons qu'on ait $0 \le u_n \le u_{n+1} \le 100$.

En appliquant f qui est croissante, on obtient $f(0) \le f(u_n) \le f(u_{n+1}) \le f(100)$,

soit $0 \le u_{n+1} \le u_{n+2} \le 80 \le 100$. On a bien démontré la propriété au rang suivant.

Conclusion: pour tout *n* entier naturel, on a bien $0 \le u_n \le u_{n+1} \le 100$.

3c. (2 pts) La suite (u_n) est croissante et majorée par 100 d'après la question précédente, donc elle converge.

3d. (2 pts) D'après la question **2**, les solutions de l'équation f(x) = x sont 0 et 75, mais la limite de (u_n) ne peut être 0, donc la limite de la suite (u_n) est 75.

(1 pt) Cela signifie que la population de la colonie d'oiseaux se rapprochera de plus en plus de 75.

4a. (1 pt) seuil (70) renvoie l'année durant laquelle la population de la colonie atteindra 70.

(1 pt) L'exécution échoue car la population de la colonie n'atteint jamais 100.

1a. (1 pt) En 0 à droite, on a $\lim_{x \to 0^+} e^x = e^0 = 1$ et $\lim_{x \to 0^+} \frac{1}{x} = +\infty$. Par somme, $\lim_{x \to 0^+} f(x) = +\infty$. (1 pt) En $+\infty$, on a $\lim_{x \to +\infty} e^x = +\infty$ et $\lim_{x \to +\infty} \frac{1}{x} = 0$. Par somme, $\lim_{x \to +\infty} f(x) = +\infty$.

1b. (2 pts) Comme la limite de f en 0 est $+\infty$, la courbe admet une asymptote verticale d'équation x=0.

2a. (2 pts: 1 pt pour la dérivation, 1 pt pour la factorisation, même si elle n'est faite qu'en 2b)

On dérive g comme un produit : pour x positif, $g'(x) = 2x \times e^x + x^2 \times e^x = xe^x(2+x)$.

2b. (1 pt) Les facteurs de ce produit sont tous positifs pour x positif, donc g'(x) est positif et la fonction g est croissante sur $[0; +\infty[$.

2c. (1 pt) On a g(0) = -1 et $g(1) = 1^2 \times e^1 - 1 = e - 1$.

2d. (3 pts) La fonction g est continue, strictement croissante, et vérifie g(0) = -1 < 0 et g(1) = e - 1 > 0. D'après le théorème des valeurs intermédiaires, il existe un unique réel $\alpha \ge 0$ tel que $g(\alpha) = 0$.

2e. (1 pt, 0 si mauvais arrondi) La calculatrice fournit $\alpha \approx 0.703$.

3a. (2 pts) On a pour tout x strictement positif:

$$f'(x) = e^x - \frac{1}{x^2} = \frac{x^2 e^x}{x^2} - \frac{1}{x^2} = \frac{g(x)}{x^2}$$

3b. (1 pt) Pour tout x strictement positif, f'(x) est du signe de g(x).

(1 pt) Or, g(x) est négatif sur $[0; \alpha]$ puis positif sur $[\alpha; +\infty[$.

(1 pt) Ainsi, f est décroissante sur]0; $\alpha]$ puis croissante sur $[\alpha; +\infty[$.

3c. (3 pts) Le minimum de f est donc $m = f(\alpha)$.

$$m = f(\alpha) = e^{\alpha} + \frac{1}{\alpha}$$

Or on sait que $g(\alpha)=0$, soit $\alpha^2 e^\alpha-1=0$ et $\alpha^2 e^\alpha=1$, donc $e^\alpha=\frac{1}{\alpha^2}$. On reprend donc :

$$m = e^{\alpha} + \frac{1}{\alpha} = \frac{1}{\alpha^2} + \frac{1}{\alpha}$$

On trouve bien l'expression voulue.

3d. (1 pt, 0 si mauvais arrondi) En prenant $\alpha \approx 0.703$, on aboutit à $m = \frac{1}{\alpha^2} + \frac{1}{\alpha} \approx 3.45$.

4a. (2 pts) Il s'agit de déterminer la dérivée seconde de f. On repart de l'expression :

$$f'(x) = e^x - \frac{1}{x^2}$$

On a alors pour tout x strictement positif:

$$f''(x) = e^x + \frac{2}{x^3}$$

(1 pt) Or e^x est positif, de même que $\frac{2}{x^3}$, pour tout x strictement positif.

Ainsi, f est une fonction convexe sur $[0; +\infty[$.

4b. (2 pts) On a
$$f(1) = e^x + \frac{1}{1} = e + 1$$
 et $f'(1) = \frac{g(1)}{1^2} = g(1) = e - 1$.

Ainsi, (T) a pour équation y = f'(1)(x-1) + f(1) = (e-1)(x-1) + e + 1 = x(e-1) + 2

4c. (2 pts) Le membre de droite de cette inégalité correspond à l'équation de la tangente (*T*).

Or, f est convexe : sa courbe représentative est au-dessus de toutes ses tangentes.

Donc on a bien que pour x strictement positif, $f(x) \ge x(e-1) + 2$.

Exercice 4

20 points

- **1. Réponse d**, par le théorème des gendarmes.
- 2. Réponse b, par un calcul de limites et les croissances comparées.
- **3. Réponse a**, par une dérivée de fonctions composées et une petite simplification.
- **4. Réponse d**, par une dérivée de fonctions composées et une lecture attentive de l'énoncé.
- **5. Réponse c**, la fonction dérivée f' étant croissante sur $]-\infty;0]$.