Lycée Colbert

Baccalauréat général blanc Session 2022

Spécialité Mathématiques

Durée de l'épreuve : 4 heures

Ce sujet comporte 5 pages.

Le sujet est composé de **quatre exercices indépendants**. Le candidat doit traiter tous les exercices.

L'usage de la **calculatrice avec mode examen** actif est autorisé. L'usage de la **calculatrice sans mémoire**, « type collège », est autorisé.

Dans chaque exercice, le candidat peut **admettre un résultat précédemment donné** dans le texte pour aborder les questions suivantes, à condition de l'indiquer clairement sur la copie.

Le candidat est invité à **faire figurer sur la copie toute trace de recherche**, même incomplète ou non fructueuse, qu'il aura développée.

Il est rappelé que la **qualité de la rédaction**, la clarté et la précision des raisonnements seront prises en compte dans l'appréciation des copies.

Si le candidat pense repérer une **erreur dans le sujet**, il le signale sur sa copie, en précisant les hypothèses qu'il a alors été amené à faire. Il en sera tenu compte dans la correction. Exercice 1 5 points

Le directeur d'une réserve marine a recensé 3 000 cétacés dans cette réserve au 1^{er} juin 2017. Il est inquiet, car il sait que le classement de la zone en « réserve marine » ne sera pas reconduit si le nombre de cétacés de cette réserve devient inférieur à 2 000.

Une étude lui permet d'élaborer un modèle selon lequel, chaque année :

- entre le 1^{er} juin et le 31 octobre, 80 cétacés arrivent dans la réserve marine.
- entre le 1^{er} novembre et le 31 mai, la réserve subit une baisse de 5% de son effectif par rapport à celui du 31 octobre qui précède.

On modélise l'évolution du nombre de cétacés par une suite (u_n) . Selon ce modèle, pour tout entier naturel n, u_n désigne le nombre de cétacés au 1^{er} juin de l'année 2017 + n. On a donc $u_0 = 3\,000$.

- **1.** Justifier que $u_1 = 2926$.
- **2.** Justifier que pour tout entier naturel n, $u_{n+1} = 0.95u_n + 76$.
- **3.** A l'aide d'un tableur, on a calculé les 8 premiers termes de la suite (u_n) . Le directeur a configuré le format des cellules pour que ne soient affichés que des nombres arrondis à l'unité.

	A	В	С	D	Е	F	G	Н	I
1	n	0	1	2	3	4	5	6	7
2	u_n	3 000	2 9 2 6	2856	2789	2725	2 665	2608	2 553

Quelle formule peut-on entrer dans la cellule C2 afin d'obtenir, par recopie vers la droite, les termes de la suite (u_n) ?

- **4. a.** Démontrer que pour tout entier naturel n, $u_n \ge 1520$.
 - **b.** Démonter que la suite (u_n) est décroissante.
 - ${f c}$. Justifier que la suite (u_n) est convergente. On ne cherchera pas ici la valeur de la limite.
- **5.** On désigne par (v_n) la suite définie pour tout entier naturel n, par $v_n = u_n 1$ 520.
 - **a.** Démontrer que la suite (v_n) est une suite géométrique de raison 0,95 dont on précisera le premier terme.
 - **b.** En déduire que, pour tout entier naturel n, $u_n = 1480 \times 0.95^n + 1520$.
 - **c.** Déterminer la limite de la suite (u_n) .
- **6.** Recopier et compléter l'algorithme suivant pour déterminer l'année à partir de laquelle le nombre de cétacés présents dans la réserve marine sera inférieur à 2 000.

$$n \leftarrow 0$$
 $u \leftarrow 3000$
Tant que ...
 $n \leftarrow ...$
 $u \leftarrow ...$
Fin de Tant que

La notation \leftarrow correspond à une affectation de valeur, ainsi « $n \leftarrow 0$ » signifie « Affecter à n la valeur 0 ».

7. La réserve fermera-t-elle un jour ? Si oui, déterminer l'année de la fermeture.

Exercice 2 5 points

Les parties A et B sont indépendantes.

Partie A

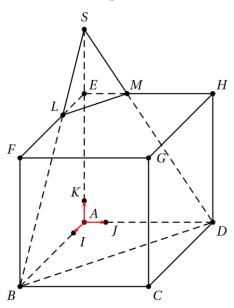
Dans l'espace muni d'un repère orthonormé, on considère les points A(0; 1; -1) et B(-2; 2; -1) ainsi que la droite D de représentation paramétrique :

$$\begin{cases} x = -2 + t \\ y = 1 + t \text{ avec } t \in \mathbb{R} \\ z = -1 - t \end{cases}$$

- **1.** Déterminer une représentation paramétrique de la droite (*AB*).
- **2. a.** Montrer que les droites (AB) et D ne sont pas parallèles.
 - **b.** Montrer que les droites (*AB*) et *D* ne sont pas sécantes. Que peut-on en déduire sur leur position relative ?

Partie B

Un artiste souhaite réaliser une sculpture composée d'un tétraèdre posé sur un cube de 6 mètres d'arête. Ces deux solides sont représentés par le cube *ABCDEFGH* et par le tétraèdre *SELM* ci-après.



On munit l'espace du repère orthonormé $(A; \overrightarrow{AI}; \overrightarrow{AJ}; \overrightarrow{AK})$ tel que $I \in [AB], J \in [AD], K \in [AE],$ et AI = AJ = AK = 1, l'unité graphique représentant un mètre.

Les points L, M et S sont définis de la façon suivante : L est le point tel que $\overrightarrow{FL} = \frac{2}{3} \overrightarrow{FE}$,

M est le point d'intersection du plan (BDL) et de la droite (EH), S est le point d'intersection des droites (BL) et (AK).

- **1.** Démontrer, sans calcul de coordonnées, que les droites (*LM*) et (*BD*) sont parallèles.
- **2.** Démontrer que les coordonnées du point *L* sont (2; 0; 6).
- **3. a.** Donner une représentation paramétrique de la droite (BL).
 - **b.** Vérifier que les coordonnées du point *S* sont (0; 0; 9).

Exercice 3 5 points

Soit f la fonction définie sur l'intervalle $]0; +\infty[$ par :

$$f(x) = \frac{e^x}{x}$$

On note C_f la courbe représentatie de la fonction f dans un repère orthonormé.

- **1. a.** Préciser la limite de la fonction f en $+\infty$.
 - **b.** Justifier que l'axe des ordonnées est asymptote à la courbe C_f .
- **2.** Montrer que pour tout nombre réel x de l'intervalle $]0; +\infty[$, on a :

$$f'(x) = \frac{e^x(x-1)}{x^2}$$

où f' désigne la fonction dérivée de la fonction f.

- 3. Déterminer les variations de la fonction f sur l'intervalle $]0; +\infty[$. On établira un tableau de variations de la fonction f dans lequel apparaîtront les limites.
- **4.** Soit m un nombre réel. Préciser, en fonction des valeurs du nombre réel m, le nombre de solutions de l'équation f(x) = m.
- 5. On note Δ la droite d'équation y = -x. On note A un éventuel point de C_f d'abscisse α en lequel la tangente à la courbe C_f est parallèle à la

On note A un eventuel point de C_f d'abscisse a en lequel la tangente a la courbe C_f est parallele a la droite Δ .

a. Montrer que a est solution de l'équation $e^x(x-1) + x^2 = 0$.

On note g la fonction définie sur $]0; +\infty[$ par $g(x) = e^x(x-1) + x^2$.

On admet que la fonction g est dérivable et on note g' sa fonction dérivée.

- **b.** Calculer g'(x) pour tout nombre réel x de l'intervalle $]0; +\infty[$, puis dresser le tableau de variations de g sur $]0; +\infty[$.
- **c.** Montrer qu'il existe un unique point A en lequel la tangente à C_f est parallèle à la droite Δ .

Exercice 4

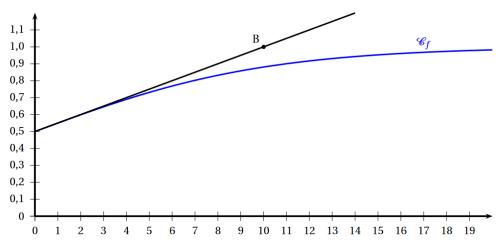
5 points

Partie A

Soient a et b des nombres réels. On considère une fonction f définie sur $[0; +\infty[$ par :

$$f(x) = \frac{a}{1 + e^{-bx}}$$

La courbe C_f représentant la fonction f dans un repère orthogonal est donnée ci-dessous. La courbe C_f passe par le point A(0; 0,5). La tangente à la courbe C_f au point A passe par le point B(10; 1).



1. Justifier que a = 1.

On obtient alors, pour tout réel $x \ge 0$,

$$f(x) = \frac{1}{1 + e^{-bx}}$$

2. On admet que la fonction f est dérivable sur $[0; +\infty[$ et on note f' sa fonction dérivée.

Vérifier que, pour tout réel $x \ge 0$,

$$f'(x) = \frac{be^{-bx}}{(1 + e^{-bx})^2}$$

3. En utilisant les données de l'énoncé, déterminer *b*.

Partie B

La proportion d'individus qui possèdent un certain type d'équipement dans une population est modélisée par la fonction p définie sur $[0; +\infty[$ par :

$$p(x) = \frac{1}{1 + e^{-0.2x}}$$

Le réel x représente le temps écoulé, en année, depuis le 1^{er} janvier 2000.

Le nombre p(x) modélise la proportion d'individus équipés après x années.

Ainsi, pour ce modèle, p(0) est la proportion d'individus équipés au 1^{er} janvier 2000 et p(3,5) est la proportion d'individus équipés au milieu de l'année 2003.

- 1. Quelle est, pour ce modèle, la proportion d'individus équipés au 1^{er} janvier 2010 ? On en donnera une valeur arrondie au centième.
- **2. a.** Déterminer le sens de variation de la fonction p sur $[0; +\infty[$.
 - **b.** Calculer la limite de la fonction p en $+\infty$.
 - c. Interpréter cette limite dans le contexte de l'exercice.
- 3. On considère que, lorsque la proportion d'individus équipés dépasse 95%, le marché est saturé. Déterminer, en expliquant la démarche, l'année au cours de laquelle cela se produit.