Correction du devoir surveillé sur le chapitre 3

Exercice 1 (7 pts) **1.** (0,5 pt) Par soustraction, on détermine les coordonnées du vecteur \overrightarrow{AB} $\left(-2\right)$

(0,5 pt) Ainsi, (AB) admet pour représentation paramétrique (AB) : $\begin{cases} x = 1 + t \\ y = 2 - 2t \\ z = 5 - 3t \end{cases}$, $t \in \mathbb{R}$

2a. (1 pt) On utilise les coordonnées de M: $\begin{cases} -5 = 1 + 2t \\ -5 = -2 + t \\ 1 = 4 - t \end{cases} \Leftrightarrow \begin{cases} t = -3 \\ t = -3 \\ t = 3 \end{cases}$ ce qui est contradictoire.

Donc M n'appartient pas à (d_1) .

(1 pt) On utilise les coordonnées de M: $\begin{cases} -3 = 1 + 2t \\ -4 = -2 + t \\ 6 = 4 - t \end{cases} \Leftrightarrow \begin{cases} t = -2 \\ t = -2 \end{cases}$ ce qui convient.

Donc N appartient à (d_1) .

2b. (1 pt) (d_1) est dirigée par le vecteur $\vec{v}inom{2}{1-1}$ qui est colinéaire à \vec{u} avec $\vec{u}=-2\vec{v}$.

Donc \vec{u} est un vecteur directeur de (d_1) .

2c. (1 pt) (d_2) est dirigée par le vecteur $\vec{w} \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix}$, qui n'est pas colinéaire à \vec{v} .

Donc (d_1) et (d_2) ne sont pas parallèles.

2d. (1,5 pts) Soit P un éventuel point d'intersection, il existe alors t et t' réels tels d

$$\begin{cases} 1 + 2t = t' + 8 \\ -2 + t = 1 \\ 4 - t = 3t' + 4 \end{cases} \Longleftrightarrow \begin{cases} 1 + 2 \times 3 = t' + 8 \\ t = 3 \\ 4 - 3 = 3t' + 4 \end{cases} \Longleftrightarrow \begin{cases} 7 = t' + 8 \\ t = 3 \\ 1 = 3t' + 4 \end{cases} \Longleftrightarrow \begin{cases} t' = -1 \\ t = 3 \\ t' = -1 \end{cases}$$

Le système a une solution, les droites (d_1) et (d_2) sont donc sécantes

(0.5 pt) Leur intersection est le point de (d_2) de paramètre -1 (ou bien le point de (d_1) de paramètre 3), soit P(7; 1; 1).

Exercice 2 (3 pts) a. (0.5 pt) I et I sont les milieux de [SA] et [SB], donc (II)//(AB) par le théorème de la droite des milieux. (1 pt) (II)est parallèle à une droite du plan (ABC), donc (IJ) est parallèle à ce plan.

b. (0.5 pt) A appartient à la droite (SI), donc au plan (SIK).

(0.5 pt) II en est de même pour C, qui appartient à la droite (SK).

(0.5 pt) Donc A et C appartiennent aux deux plans, et la droite d'intersection de (SIK) et (ABC) est (AC).

Exercice 3 (8 pts) **1.** (1 pt) I a pour coordonnées $(0; 0; \frac{1}{2})$, J a pour coordonnées $(\frac{1}{2}; 1; \frac{1}{2})$.

2. (0,5 pt) On commence par donner les coordonnées du vecteur \overrightarrow{IJ} : $(\frac{1}{2}; 1; 0)$

(1 pt) Ensuite,
$$IJ = \sqrt{\left(\frac{1}{2}\right)^2 + 1^2 + 0^2} = \sqrt{\frac{1}{4} + 1} = \sqrt{\frac{5}{4}}$$

3. (1 pt) Le vecteur \overrightarrow{IJ} a pour coordonnées $(\frac{1}{2};1;0)$, donc une représentation de (IJ) est, en partant de $I: \begin{cases} x=\frac{c}{2} \\ y=t \\ z=\frac{1}{2} \end{cases}$

4. (0,5 pt) $\overrightarrow{AM} = \overrightarrow{AE} + \overrightarrow{EM} = \overrightarrow{AE} + \frac{1}{3}\overrightarrow{EH} = \overrightarrow{AE} + \frac{1}{3}\overrightarrow{AD}$ donc M a pour coordonnées $(0; \frac{1}{3}; 1)$

$$(0.5 \text{ pt}) \overrightarrow{AN} = \frac{1}{3} \overrightarrow{AC} = \frac{1}{3} \overrightarrow{AB} + \frac{1}{3} \overrightarrow{BC} = \frac{1}{3} \overrightarrow{AB} + \frac{1}{3} \overrightarrow{AD} \text{ donc } N \text{ a pour coordonnées } (\frac{1}{3}; \frac{1}{3}; 0)$$

(0.5 pt) K est le milieu de [MN], il faut donc calculer la moyenne des coordonnées de M et de N, donc $K(\frac{1}{6};\frac{1}{2};\frac{1}{2};\frac{1}{2})$

5. (1,5 pts) Le vecteur \overrightarrow{IK} a pour coordonnées $(\frac{1}{2};\frac{1}{2};0)$ et \overrightarrow{IJ} a pour coordonnées $(\frac{1}{2};1;0)$,

donc $\overrightarrow{IJ} = 3\overrightarrow{IK}$, ainsi \overrightarrow{IJ} et \overrightarrow{IK} sont colinéaires, et les points I, J et K sont alignés.

6. (0,5 pt) K est le milieu de la diagonale [MN] mais ce n'est pas le milieu de l'autre diagonale [IJ]:

(0,5 pt) il aurait fallu pour cela que $\overrightarrow{II} = 2\overrightarrow{IK}$ à la question précédente.

(0,5 pt) Donc les diagonales du quadrilatère INJM ne se coupent pas en leur milieu : ce n'est pas un parallélogramme.

Exercice 4 (2 pts) (1 pt) (d_1) est dirigée par $\begin{pmatrix} -2 \\ -4 \\ 2 \end{pmatrix}$ et (d_2) est dirigée par $\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$. Ces deux vecteurs sont colinéaires, donc (d_1)//(d_2). (1 pt) Il suffit de montrer qu'un point de (d_1) , par exemple M(0;2;-3), appartient bien à (d_2) , ce qui est le cas avec t'=2. Charly-piva.fr