Chapitre 11 - Variables aléatoires

1. Définitions

1a. Variables aléatoires

Définition : une variable aléatoire est un réel qui dépend de l'issue d'une expérience aléatoire.

Exemple 1 On propose le jeu suivant : on mise 5€, puis on lance deux fois de suite une pièce équilibrée. On gagne ensuite 4€ par Pile obtenu.

Soit X la variable aléatoire donnant le gain à ce jeu en tenant compte de la mise. Donner la loi de probabilité de X

Exemple 2

À l'issue d'une chaîne de fabrication de jouets en bois, on recherche deux types de défauts : les défauts de solidité et les défauts de couleur. Une étude a permis de relever les résultats suivants sur un échantillon de 1 000 jouets :

À réparer, un défaut de couleur coûte 5 € par jouet et un défaut de solidité coûte 12 € par jouet.

X est la variable aléatoire donnant le coût de réparation d'un objet avant d'être mis sur le marché.

- **a.** Quelles valeurs peut prendre *X* ?
- **b.** Décrire par une phrase l'événement $\{X \le 10\}$.
- **c.** Que vaut p(X = 12) ?

Exercice 3 On considère une variable aléatoire X dont la loi de probabilité est donnée dans le tableau suivant.

a. Que vaut p(X = 8) ? **b.** Calculer $p(X \le 0)$ et p(X > 7).

	Défaut de couleur	Pas de défaut de couleur	Total
Défaut de solidité	5	28	33
Pas de défaut de solidité	15	952	967
Total	20	980	1 000

x_i	-8	0	7	8	20
$P(X=x_i)$	0,4	0,12	0,3		0,08

Exercice 4 On lance deux dés équilibrés à 4 faces numérotées de 1 à 4.

On note X la variable aléatoire qui à chaque lancer associe la valeur du plus grand numéro obtenu sur les deux dés. Déterminer la loi de probabilité de X.

Exemple 1

Un arbre nous apprend que:

- la probabilité d'obtenir deux pile (donc de gagner $4 \times 2 5 = 3$ €) est $\frac{1}{4}$,
- celle d'obtenir exactement un pile (donc de perdre 1€, car 4 5 = −1) est $\frac{1}{2}$,
- celle de n'obtenir aucun pile, et donc de perdre la mise, est $\frac{1}{4}$.

On peut en déduire le tableau suivant.

x_i	-5	-1	3
$P(X = x_i)$	1	1	1
	$\overline{4}$	$\overline{2}$	$\overline{4}$

Exemple 2

a. Le jouet peut n'avoir aucun défaut (X = 0), avoir seulement un défaut de solidité (X = 12), un défaut de couleur (X = 5) ou même avoir les deux défauts (X = 17). Ainsi, $X \in \{0; 5; 12; 17\}$.

b. L'événement correspond à « le coût de réparation est inférieur à $10 \in \mathbb{N}$, ce qui est équivalent à « le jouet n'a aucun défaut, ou seulement un défaut de couleur ». **c.** L'événement X = 12 correspond aux jeux qui n'ont qu'un défaut de solidité.

$$p(X = 12) = \frac{33}{1000} = 0,033$$

Exemple 3

a. La somme des probabilités de toutes les issues est 1. Ainsi,

$$p(X = 8) = 1 - 0.4 - 0.12 - 0.3 - 0.02 = 0.1$$

b.
$$p(X \le 0) = p(X = -8) + p(X = 0) = 0.4 + 0.12 = 0.52$$

 $p(X > 7) = p(X = 8) + p(X = 20) = 0.1 + 0.08 = 0.18.$

Exemple 4

Il existe $4^2 = 16$ lancers différents.

- la seule possibilité pour avoir X=1 correspond au lancer où les deux dés donnent 1, donc $p(X=1)=\frac{1}{16}$
- pour avoir X=2, il faut obtenir 2 et 1, 1 et 2 ou 2 et 2. Donc $p(X=2)=\frac{3}{16}$
- pour avoir X=3, on peut compter 6 possibilités, donc $p(X=3)=\frac{5}{16}$
- ainsi, $p(X = 4) = 1 \frac{1}{16} \frac{3}{16} \frac{5}{16} = \frac{7}{16}$

x_i	1	2	3	4
$P(X = x_i)$	1	3	5	7
	16	16	16	16

1b. Indépendance

Définition: deux variables aléatoires X et Y sont dites indépendantes si pour tous $x, y \in \mathbb{R}$, les événements (X = x) et (Y = y) sont indépendants.

Rappel: deux événements A et B de probabilité non nulle sont **indépendants** si et seulement si $p_A(B) = p(B)$ ou de façon équivalente, si $p(A \cap B) = p(A) \times p(B)$.

Par exemple, quand on lance deux pièces simultanément, les variables aléatoires X et Y donnant les résultats des deux pièces sont indépendantes.

Si A et B sont indépendants, alors leurs contraires \bar{A} et \bar{B} le sont aussi, de même que \bar{A} et B, ou encore A et \bar{B} .

Exemple 1 On lance un dé équilibré à 6 faces numérotées de 1 à 6.

X est la variable aléatoire prenant la valeur 1 si le résultat est pair, et 0 sinon.

Y est la variable aléatoire prenant la valeur 1 si le résultat est supérieur ou égal à 5, et 0 sinon.

X et Y sont-elles indépendantes ?

Exemple 2 Un jeu comporte 4 cartes et sur chacune d'elle est écrit A, B, U ou W.

On tire au hasard les 4 cartes sans remise de sorte à former un mot (qui peut ne pas avoir de sens).

X est la variable aléatoire donnant le rang de la première voyelle tirée et Y est la variable aléatoire prenant la valeur 1 si on a tiré les deux voyelles en premier et 0 sinon.

Donner la loi de X et Y. Sont-elles indépendantes ?

Exemple 1 On peut chercher, par exemple, si les événements (X = 1) et (Y = 1) sont indépendants.

$$p(X = 1) = \frac{1}{2}$$
 et $p(Y = 1) = \frac{2}{6} = \frac{1}{3}$

L'événement ($X = 1 \cap Y = 1$) correspond au cas où le résultat est pair et supérieur ou égal à 5, ce qui ne correspond qu'à face 6. Donc :

$$p(X = 1 \cap Y = 1) = \frac{1}{6}$$

De plus:

$$p(X = 1) \times p(Y = 1) = \frac{1}{2} \times \frac{1}{3} = \frac{1}{6}$$

Ainsi, les événements (X = 1) et (Y = 1) sont indépendants.

Les variables *X* et *Y* ne pouvant valoir que 0 ou 1, on en déduit avec la probabilités des événements contraires que les variables *X* et *Y* sont indépendantes : la valeur de l'une n'influe pas sur la valeur de l'autre.

Exemple 2

Si on tire les deux voyelles en premier (ce qui correspond à Y = 1), alors la première voyelle tirée est logiquement la première lettre (ce qui correspond à X = 1). Donc on se doute un peu que X et Y ne sont pas indépendantes.

Un tirage de mot correspond à une permutation de 4 lettres. Il y a donc 4! = 24 mots différents.

Dans un mot de 4 lettres, il y a 2 voyelles, donc la première voyelle apparaît forcément en $3^{\text{ème}}$ position ou avant : X peut valoir 1, 2 ou 3.

charly-piva.fr

- Il y a 12 mots dont la $1^{\text{ère}}$ lettre est une voyelle (on a 2 choix pour la voyelle, puis 3! = 6 choix pour le placement des autres lettres, et $2 \times 6 = 12$).
- Il y a 4 mots où la première voyelle n'est qu'en 3 ème position : BWAU, BWUA, WBAU, WBUA.

On peut en déduire la loi de *X*.

x_i	1	2	3
$P(x = x_i)$	12 _ 1	8 _ 1	4 _ 1
	$\frac{1}{24} = \frac{1}{2}$	$\frac{1}{24} = \frac{1}{3}$	$\frac{1}{24} = \frac{1}{6}$

Y vaut 1 si et seulement si on a tiré les mots AUBW, AUWB, UABW ou UAWB, ce qui fait 4 mots sur 24.

y_i	0	1
$P(Y = y_i)$	20 _ 5	4 _ 1
	${24} = {6}$	$\frac{1}{24} = \frac{1}{6}$

Nous avons les lois de X et de Y. Montrons qu'elles ne sont pas indépendantes. L'événement $(X = 1 \cap Y = 1)$ correspond au cas où la $1^{\text{ère}}$ lettre tirée est une voyelle, et où les deux voyelles ont été tirées en premier. Cela correspond aux 4 mots AUBW, AUWB, UABW ou UAWB. Ainsi :

$$p(X = 1 \cap Y = 1) = \frac{4}{24} = \frac{1}{6}$$

Or quand on effectue le produit des probabilités des deux événements séparés :

$$p(X = 1) \times p(Y = 1) = \frac{1}{2} \times \frac{1}{6} = \frac{1}{12} \neq \frac{1}{6}$$

Ainsi, les variables X et Y ne sont pas indépendantes.

1c. Espérance, variance, écart-type

Définition : L'espérance E(X) d'une variable aléatoire X est la moyenne des valeurs de X, pondérée par les probabilités.

Définitions:

• la variance de X est définie par :

$$V(X) = p_1(x_1 - E(X))^2 + p_2(x_2 - E(X))^2 + \dots + p_n(x_n - E(X))^2$$

• l'écart-type est définie par $\sigma(X) = \sqrt{V(X)}$.

Rappel:

• si *X* suit une loi de Bernoulli de paramètre *p* :

$$E(X) = p$$
 et $V(X) = p(1 - p)$

• si X suit une loi binomiale de paramètres n et p:

$$E(X) = np$$
 et $V(X) = np(1-p)$

Remarques:

• Si X estune variable aléatoire dont la loi est donnée par le tableau ci-contre, l'espérance de X est $E(X) = p_1x_1 + p_2x_2 + \cdots + p_nx_n$.

x_i	x_1	x_2	***	x _n
$p(X=x_i)$	p_1	p_2	***	p_n

• La variance et l'écart-type permettent de se donner une idée de la répartition des valeurs prises par une variable autour de son espérance en tenant compte des probabilités. Plus l'écart-type est grand, plus les valeurs prises par la variable aléatoire sont « éloignées » de l'espérance.

Exemple 1 On mise 3 € puis on lance trois fois de suite une pièce équilibrée. On gagne 2 € par Pile obtenu.

- **a.** Calculer l'espérance de G, le gain obtenu. Ce jeu est-il équitable ?
- **b.** Calculer la variance et l'écart-type de G.

Exemple 2 Les lois de probabilités de deux variables aléatoires X et Y sont données ci-contre.

En utilisant la calculatrice :

a. Comparer E(X) et E(Y). **b.** Comparer $\sigma(X)$ et $\sigma(Y)$.

x_i	-8	0	8	20	
$p(X = x_i)$	0,25	0,25	0,25	0,25	
y_{i}	-20	-12	-2	10	15
$p(Y = y_i)$	0,1	0,1	0,15	0,25	0,4

Exemple 1

a. On dresse un arbre si besoin, et on arrive à la loi suivante.

g_i	- 5	-2	1	4
$P(G=g_i)$	1	3	3	1
	8	8	8	8

On calcule:

$$E(G) = -5 \times \frac{1}{8} - 2 \times \frac{3}{8} + 1 \times \frac{3}{8} + 4 \times \frac{1}{8}$$
$$= -\frac{5}{8} - \frac{6}{8} + \frac{3}{8} + \frac{4}{8} = -\frac{4}{8}$$
$$= -\mathbf{0}, \mathbf{5}$$

Le jeu n'est pas équilibré, on **perd en moyenne 0,50€** en jouant.

b. On applique la formule de la variance :

$$V(G) = \frac{1}{8}(-5 - (-0.5))^{2} + \frac{3}{8}(-2 - (-0.5))^{2} + \frac{3}{8}(1 - (-0.5))^{2} + \frac{1}{8}(4 - (-0.5))^{2}$$

$$V(G) = \frac{1}{8}(4.5^{2} + 3 \times 1.5^{2} + 3 \times 1.5^{2} + 4.5^{2})$$

$$V(G) = \frac{1}{8}(20.25 + 6.75 + 6.75 + 20.25)$$

$$V(G) = \frac{54}{8}$$

$$V(G) = 6.75$$

$$\text{et } \sigma(G) = \sqrt{6.75} \approx 2.60$$

Exemple 2

Cet exemple est l'occasion de découvrir que les calculatrices savent très bien déterminer l'espérance, la variance et l'écart-type d'une série statistique. Par exemple, on peut entrer les valeurs et les « effectifs » (qui correspondent ici aux probabilités) dans le menu « Statistiques » de la Numworks.

rad	STATISTIQUES	-
Données	Graphique	Stats
Valeurs V1	Effectifs N1	Valeurs V2
-8	0.25	-20
0	0.25	-12
8	0.25	-2
20	0.25	10
		15

- **a.** On a E(X) = 5 et E(Y) = 5, les espérances sont identiques.
- **b.** Par contre, $\sigma(X) \approx 10,34$ et $\sigma(Y) \approx 12,04$: l'écart-type est plus élevé sur la variable Y. Les valeurs de cette variable sont plus souvent éloignées de leur espérance.

2. Opérations

2a. Linéarité de l'espérance

Propriété: soient X et Y deux variables aléatoires, et $k \in \mathbb{R}$.

Alors E(X + Y) = E(X) + E(Y) et E(kX) = kE(X).

Exemple 1 On lance un dé à six faces numérotées de 1 à 6, et un dé à dix faces numérotés de 1 à 10.

On note X et Y les variables aléatoires donnant respectivement les résultats affichés par le dé à six faces et le dé à dix faces. Donner l'espérance de X+Y.

Exemple 2 Une première urne contient trois boules : deux avec le nombre 10 et une avec le nombre - 3.

Une deuxième urne contient sept boules : cinq avec le nombre 3 et deux avec le nombre 0.

On note X et Y les résultats obtenus avec chaque urne. Donner l'espérance de X+Y.

Exemple 1 On a

Exemple 1 on a
$$E(X) = \frac{1+2+3+4+5+6}{6} = \frac{21}{6} = 3,5$$
et de même, $E(Y) = \frac{1+2+3+4+5+6+7+8+9+10}{10} = \frac{55}{10} = 5,5$
On en déduit que $E(X+Y) = 3,5+5,5 = 9$.

Exemple 2

$$E(X) = \frac{2}{3} \times 10 + \frac{1}{3} \times (-3) = \frac{17}{3}$$

$$E(Y) = \frac{5}{7} \times 3 + \frac{2}{7} \times 0 = \frac{15}{7}$$

$$\text{et } E(X+Y) = \frac{17}{3} + \frac{15}{7} = \frac{119}{21} + \frac{45}{21} = \frac{164}{21} \approx 7,81$$

2b. Variance et indépendance

Propriété: soient *X* et *Y* deux variables aléatoires.

- si X et Y sont indépendantes, alors V(X + Y) = V(X) + V(Y)
- pour tout $k \in \mathbb{R}$, $V(kX) = k^2V(X)$ et $\sigma(kX) = |k|\sigma(X)$.

Exemple 1 On lance un dé tétraédrique équilibré dont les 4 faces portent les montants en euros 10 ; 1 ; -2 et -4. X est la variable aléatoire donnant le gain algébrique affiché.

- **a.** Calculer E(X), interpréter ce résultat et calculer V(X).
- **b.** On décide de tripler chacun des montants en jeu (par exemple 10 devient 30 ; 4 devient 12).

 $\it Z$ est la variable aléatoire donnant le gain algébrique à ce deuxième jeu.

Exprimer Z en fonction de X. En déduire E(Z) et V(Z).

Exemple 2 Une urne contient 20 000 billes dont 70 % portent le nombre 1, 25 % le nombre 2 et les autres portent le nombre 9. On effectue un prélèvement de 3 billes. On appelle S la variable aléatoire donnant la somme des trois nombres obtenus. On suppose que le prélèvement de 3 billes est assimilable à un tirage avec remise.

- a. Expliquer pourquoi on peut assimiler ce prélèvement à un tirage avec remise.
- **b.** On décompose S sous forme $S = X_1 + X_2 + X_3$ où X_i est le nombre porté par la boule lue en i-ème position. Déterminer la loi suivie par X_1 ; X_2 et X_3 , puis calculer E(S) et V(S).

Exemple 1 a.
$$E(X) = \frac{1}{4} \times 10 + \frac{1}{4} \times 1 - \frac{1}{4} \times 2 - \frac{1}{4} \times 4 = 1, 25.$$

En moyenne, on gagne 1,25€ en jouant à ce jeu.

$$V(X) = \frac{1}{4}(10 - 1,25)^2 + \frac{1}{4}(1 - 1,25)^2 + \frac{1}{4}(-2 - 1,25)^2 + \frac{1}{4}(-4 - 1,25)^2$$

$$V(X) = \frac{1}{4}(8,75^2 + 0,25^2 + 3,25^2 + 5,25^2)$$

$$V(X) = 28,6875$$

b. Dans ce cas, Z = 3X.

D'après la linéarité de l'espérance, $E(Z) = E(3X) = 3E(X) = 3 \times 1,25 = 3,75$ En moyenne, on gagne 3,75€ en jouant à ce nouveau jeu.

$$V(Z) = V(3X) = 3^2V(X) = 9V(X) = 9 \times 28,6875 = 258,1875.$$

Exemple 2 a. Le nombre de billes est suffisamment grand : tirer 3 billes sur 20 000 ou sur 19 997 billes ne change presque pas les probabilités.

b. • X_1 , X_2 et X_3 suivent la même loi :

x_i	1	2	3
$P(X_1 = x_i)$	0,7	0,25	0,05

•
$$E(X_1) = 1 \times 0.7 + 2 \times 0.25 + 3 \times 0.05 = 0.7 + 0.5 + 0.15 = 1.35$$

Comme X_2 et X_3 suivent la même loi :

$$E(S) = E(X_1 + X_2 + X_3) = E(X_1) + E(X_2) + E(X_3) = 3 \times E(X_1) = 3,95$$

• On calcule la variance de X_1 à la calculatrice. $V(X_1)=0.3275$

Le tirage est assimilé à un tirage avec remise, donc on peut considérer que **les variables** X_1 , X_2 et X_3 sont indépendantes.

Il est indispensable de préciser cela pour calculer la somme des variances.

Ainsi,
$$V(S) = V(X_1 + X_2 + X_3) = V(X_1) + V(X_2) + V(X_3) = 3 \times V(X_1) = 0.9825$$
. charly-piva.fr

2c. Échantillons

Définition : soient X_1 , X_2 , ... X_n plusieurs variables aléatoires indépendantes, qui suivent toutes la même loi.

Le n-uplet $(X_1, X_2, ... X_n)$ est appelé échantillon de taille n associé à cette loi.

Propriété: avec les notations précédentes, on a :

$$E(X_1 + \dots + X_n) = nE(X_1)$$
 $V(X_1 + \dots + X_n) = nV(X_1)$

Remarques • Si on lance 10 dés à six faces, soit X_1 , X_2 ... X_{10} les variables représentant les résultats. Le 10-uplet $(X_1; X_2; ...; X_{10})$ est un échantillon de taille 10 associé à la loi d'un lancer de dé à six faces. L'échantillon peut prendre $\mathbf{6^{10}}$ valeurs différentes. Par exemple : (1; 5; 5; 4; 2; 6; 6; 3; 5; 2) est une de ces valeurs.

• Si X_1 , X_2 ... X_n sont n variables aléatoires indépendantes qui suivent une **loi de Bernoulli de paramètre** p (elles valent 1 en cas de succès avec probabilité p, et 0 en cas d'échec avec probabilité 1-p). Le n-uplet $(X_1; X_2; ...; X_n)$ est un échantillon de taille n, associé à cette loi. Les valeurs possibles pour cet échantillon peuvent se représenter sur un arbre, il y en a 2^n . Par exemple : (1; 1; 0; 1; 0; ...) La loi de la **somme** $S = X_1 + X_2 + \cdots + X_n$ est la **loi binomiale** $\mathcal{B}(n; p)$.

Exemple 1 Dans un pays, 27% de la population compte voter pour un candidat A à la prochaine élection. On interroge 40 personnes de ce pays. Pour tout entier i entre 1 et 40, X_i est la variable aléatoire valant 1 si la i —ème personne interrogée compte voter pour A, et 0 sinon.

À quoi correspond la somme $S=X_1+X_2+\cdots+X_{40}$? Quelle est la loi suivie par S ? Calculer E(S) et V(S).

Exemple 2 On mise 2€ puis on lance un dé équilibré à quatre faces.

On gagne 1€ si on fait un 3, et 10€ si on fait un 4. Sinon on ne gagne rien.

On joue 15 fois à ce jeu. Z est la variable aléatoire donnant le gain algébrique total.

Calculer E(Z) et en donner une interprétation. Puis calculer V(Z).

Exemple 3 $Y_1, Y_2, ..., Y_{30}$ sont des variables aléatoires indépendantes suivant une même loi binomiale de paramètres n=12 et p=0.48. On pose $S=Y_1+Y_2+...+Y_{30}$ Calculer E(S) et V(S). Que remarque-t-on ?

Exemple 1 La somme *S* correspond au nombre de personnes qui comptent voter pour le candidat A sur les 40 interrogées.

Chaque X_i suit une loi de Bernoulli de paramètre 0,27 et les X_i sont indépendantes, donc S suit la loi binomiale notée $\mathcal{B}(40; 0, 27)$. On a donc $E(S) = 40 \times 0,27 = 10,8$ et $V(S) = 40 \times 0,27 \times 0,73 = 7,884$.

Exemple 2

Il s'agit d'un échantillon : tous les X_i sont indépendantes et suivent la même loi. Prenons par exemple X_1 qui suit la loi suivante :

x_i	-2	-1	8
$P(X_1 = x_i)$	0,5	0,25	0,25

• On a alors $E(X_1) = -2 \times 0.5 - 1 \times 0.25 + 8 \times 0.25 = 0.75$. Ainsi, $E(Z) = E(X_1 + X_2 + \dots + X_{15}) = 15 \times E(X_1) = 15 \times 0.75 = 11, 25$. Cela signifie qu'en moyenne, en jouant 15 fois à ce jeu, on gagne 11,25€. • $V(X_i) = 0.5(-2 - 0.75)^2 + 0.25(1 - 0.75)^2 + 0.25(8 - 0.75)^2 = 17.6875$ Donc par indépendance des X_i , $V(Z) = 15 \times V(X_1) = 265,3125$

Exemple 3

Comme les Y_i forment un échantillon de taille 30, on a : $E(S) = 30 \times E(Y_1) = 30 \times 12 \times 0.48 = 360 \times 0.48 = 172, 8$ $V(S) = 30 \times V(Y_1) = 30 \times 12 \times 0.48 \times 0.52 = 360 \times 0.48 \times 0.52 = 89,856$ On remarque que cela correspond à l'espérance et la variance d'une variable de loi $\mathcal{B}(360; 0.48)$.

3. Concentration

3a. Intervalles centrés

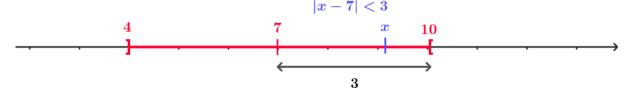
Rappel : soit $a \in \mathbb{R}$, et soit $\delta > 0$.

L'intervalle $]a - \delta; a + \delta[$ est un **intervalle centré en a**, et contient tous les nombres à une distance de a strictement inférieure à δ .

Si un réel x appartient à cet intervalle, on peut utiliser la notation valeur absolue : $|x - a| < \delta$.

Exemple: si a=7 et $\delta=3$, il s'agit de l'intervalle]4; 10[.

Tous les réels x de cet intervalle sont à une distance de 7 strictement inférieure à 3. On écrit |x-7| < 3.



3b. Inégalité de Bienaymé-Tchebychev

Soit X une v.a. On note $\mu = E(X)$ son espérance et V sa variance. On s'intéresse à la probabilité que X s'écarte de son espérance μ .

Propriété: Pour tout écart $\delta > 0$, on a :

$$p(|X - \mu| \ge \delta) \le \frac{V}{\delta^2}$$

c'est-à-dire
$$p(X \notin]\mu - \delta; \mu + \delta[) \le \frac{V}{\delta^2}$$

Avec les probabilités des événements contraires, on obtient:

$$p(|X - \mu| < \delta) \ge 1 - \frac{V}{\delta^2}$$

c'est-à-dire
$$p(X \in]\mu - \delta; \mu + \delta[) \ge 1 - \frac{V}{\delta^2}$$

Dans l'inégalité de Bienaymé-Tchebychev, le δ représente l'écart entre X et son espérance E(X).

Par exemple, si E(X) = 8 et $\delta = 5$, alors la formule nous dit que $p(|X - 8| \ge 5) \le \frac{V(X)}{5^2}$.

Autrement dit, X a une probabilité inférieure à $\frac{V(X)}{5^2}$ de ne PAS être dans l'intervalle]3; 13[.

Il est important de toujours traduire les probabilités demandées par des intervalles ouverts.

Exemple 1 Dans un cabinet médical, le nombre de patients vus chaque jour par un médecin est donné par une variable aléatoire N d'espérance E(N)=32 et d'écart type $\sigma(N)=3$.

- **a.** En appliquant l'inégalité de Bienaymé-Tchebychev, que peut-on dire de $p(|N-32|) \ge 6$) ? Interpréter le résultat dans les termes de l'énoncé.
- b. Donner une minoration de la probabilité que ce médecin voie entre 22 et 42 patients dans une journée.

Exemple 2 Une société livre des téléviseurs. Lorsqu'une commande est passée par un client, on considère que le temps de livraison est modélisé par une variable aléatoire T égale à la somme de deux variables T_1 et T_2 . La variable aléatoire T_1 modélise le nombre entier de jours pour l'acheminement du téléviseur depuis un entrepôt de stockage vers une plateforme de distribution. La variable aléatoire T_2 modélise le nombre entier de jours pour l'acheminement du téléviseur depuis cette plateforme jusqu'au domicile du client.

On admet que les variables aléatoires T_1 et T_2 sont indépendantes, et on donne :

- L'espérance $E(T_1)=4$ et la variance $V(T_1)=2$. L'espérance $E(T_2)=3$ et la variance $V(T_2)=1$
- **a.** Déterminer l'espérance E(T) et la variance V(T) de la variable aléatoire T.
- b. Un client passe une commande de téléviseur sur internet. Justifier que la probabilité qu'il reçoive son

téléviseur entre 5 et 9 jours après sa commande est supérieure ou égale à $\frac{2}{3}$

Exemple 3 Une société demande à un institut de sondage de faire une enquête sur le profil de ses clients réguliers. L'institut a élaboré un questionnaire en ligne constitué d'un nombre variable de questions. On choisit au hasard un échantillon de 1 000 clients réguliers, à qui le questionnaire est proposé. On considère que ces 1 000 clients répondent.

• Pour les remercier, la société offre un bon d'achat à chacun des clients de l'échantillon.

Le montant de ce bon d'achat dépend du nombre de questions posées au client.

• La société souhaite récompenser particulièrement les clients qui ont acheté une carte de fidélité et, en plus du bon d'achat, offre à chacun d'eux une prime d'un montant de 50 euros versée sur la carte de fidélité.

On note Y_1 la variable aléatoire qui, à chaque échantillon de 1 000 clients réguliers, associe le total, en euros, des montants du bon d'achat des 1 000 clients. On admet que $E(Y_1) = 30\,000$ et $V(Y_1) = 100\,000$.

On note X_2 la variable aléatoire qui, à chaque échantillon de 1 000 clients réguliers, associe le nombre de clients ayant acheté la carte de fidélité parmi eux, et on note Y_2 la variable aléatoire qui, à chaque échantillon de 1 000 clients, associe le total, en euros, des montants de la prime de fidélité versée.

On admet que X_2 suit la loi binomiale de paramètres 1 000 et 0,47.

- **1.** Expliquer pourquoi $Y_2 = 50X_2$.
- **2.** Calculer l'espérance $E(X_2)$ de la variable X_2 et interpréter le résultat dans le contexte de l'exercice. On note $Y=Y_1+Y_2$ la variable aléatoire égale au total général, en euros, des montants offerts (bon d'achat et prime de fidélité) aux 1 000 clients. On admet que les variables aléatoires Y_1 et Y_2 sont indépendantes.
- **3.** On note Z la variable aléatoire définie par $Z=\frac{Y}{1\ 000}$. Préciser ce que modélise la variable Z dans le contexte de l'exercice. Vérifier que son espérance E(Z) est égale à 53,5 et que sa variance V(Z) est égale à 0,722 75.
- **4.** À l'aide de l'inégalité de Bienaymé-Tchebychev, vérifier que la probabilité que Z soit strictement compris entre 51,7 euros et 55,3 euros est supérieure à 0,75.

Comme précisé avant les exemples, il faut bien remarquer qu'on doit travailler avec des **intervalles ouverts**, dont les bornes sont **exclues**.

Exemple 1

a. Tout d'abord, l'écart-type étant la racine carrée de la variance, $V(N) = \sigma(N)^2 = 3^2 = 9$.

D'après l'inégalité de Bienaymé-Tchebychev :

$$p(|N - 32| \ge 6) \le \frac{9}{6^2} \Leftrightarrow p(|N - 32| \ge 6) \le \frac{1}{4}$$

La probabilité que Ns'écarte d'au moins 6 patients de sa moyenne (c'est-à-dire, la probabilité que N ne soit PAS compris entre 26 et 38 exclus) est inférieure à $\frac{1}{4}$. En d'autres termes, cela signifie que la probabilité que le nombre de patients soit compris entre 26 et 38 exclus (donc entre 27 et 37) est supérieure à $\frac{3}{4}$.

b. On cherche la probabilité que $N \in [22; 42]$, c'est-à-dire $N \in]21; 43[$. On applique donc Bienaymé-Tchebychev avec $\delta = 11$.

$$p(|N-32| < 11) \ge 1 - \frac{9}{11^2} \Leftrightarrow p(|N-32| < 11) \ge \frac{112}{121}$$

Le médecin a donc au moins environ 93% de probabilité de voir entre 22 et 42 patients.

Exemple 2

a. Par linéarité de l'indépendance, $E(T) = E(T_1) + E(T_2) = 4 + 3 = 7$. Par indépendance des variables T_1 et T_2 , $V(T) = V(T_1) + V(T_2) = 2 + 1 = 3$. **b.** On cherche la probabilité que $T \in [5; 9]$, c'est-à-dire $T \in [4; 10]$. On applique Bienaymé-Tchebychev avec $\delta = 3$.

$$p(|T-7| < 3) \ge 1 - \frac{3}{3^2} \iff p(|T-7| < 3) \ge \frac{2}{3}$$

Exemple 3 Tout cet énoncé indigeste pour 4 pauvres questions, mais c'est le Bac.

- 1. X₂ est le nombre de clients ayant une carte de fidélité, à qui on a versé 50€ chacun, et Y_2 correspond au **montant total versé à ces clients**, donc $Y_2 = 50X_2$. **2.** X_2 suit une loi binomiale $\mathcal{B}(1\ 000;\ 0,47)$, donc $E(X_2)=1\ 000\times 0,47=470$. Cela correspond au nombre moyen de clients qui ont la carte de fidélité.
- 3. Il faut utiliser soigneusement les propriétés vues en parties 2a et 2b du cours.
- Y est le total des montants versés aux clients, donc $Z = \frac{Y}{1000}$ est le **montant** moyen versé à un client.
- Par linéarité de l'espérance :

$$E(Z) = \frac{E(Y)}{1000} = \frac{E(Y_1) + E(Y_2)}{1000}$$

Or
$$Y_2 = 50X_2$$
, donc $E(Y_2) = 50 \times E(X_2) = 50 \times 470 = 23500$. Ainsi :
$$E(Z) = \frac{30000 + 23500}{1000} = \frac{53500}{1000} = 53,5$$
• Passons maintenant à la variance.

$$V(Z) = V\left(\frac{Y}{1\ 000}\right) = \left(\frac{1}{1\ 000}\right)^2 \times V(Y) = \frac{V(Y)}{1\ 000\ 000}$$

Or Y_1 et Y_2 sont indépendantes, donc $V(Y) = V(Y_1) + V(Y_2)$.

 $V(Y_1) = 100\,000$ est donnée dans l'énoncé, et

$$V(Y_2) = V(50X_2) = 50^2 \times V(X_2) = 2500 \times V(X_2)$$

Or X_2 suit une loi $\mathcal{B}(1\ 000; 0.47)$, donc $V(X_2) = 1\ 000 \times 0.47 \times 0.53 = 249.1$. Ainsi, $V(Y_2) = 2500 \times 249,1 = 622750$. Enfin,

$$V(Z) = \frac{V(Y)}{1\ 000\ 000} = \frac{V(Y_1) + V(Y_2)}{1\ 000\ 000} = \frac{100\ 000\ + 622\ 750}{1\ 000\ 000} = \mathbf{0,722\ 75}.$$

4. On cherche la probabilité que $Z \in]51,7;55,3[$, qui est un intervalle ouvert centré sur l'espérance E(Z) = 53,5 avec $\delta = 1,8$.

$$p(|Z-53,5|<1,8) \ge 1 - \frac{0,72275}{1,8^2}$$

Or $1 - \frac{0,72275}{1.8^2} \approx 0,78$ donc la probabilité que $Z \in]51,7;55,3[$ est **bien** supérieure à 0, 75.

3c. Inégalité de concentration

Propriété : Soit $(X_1; X_2; ...; X_n)$ un échantillon de variables aléatoires d'espérance μ et de variance V, et $M_n = \frac{X_1 + X_2 + \cdots + X_n}{n}$ la moyenne de cet échantillon.

Pour tout réel strictement positif δ , on a l'inégalité :

$$p(|M_n - \mu| \ge \delta) \le \frac{V}{n\delta^2}$$

et $p(|M_n - \mu| < \delta) \ge 1 - \frac{V}{n\delta^2}$

Exemple 1

a. Avant une élection, 20% d'une population compte voter pour un candidat A.

On sonde 1000 personnes parmi la population générale. Quelle est la probabilité que le résultat du sondage s'écarte de plus de 3% de la proportion de votants pour le candidat A ?

b. Même question avec le candidat B, pour lequel 5% de la population compte voter.

Exemple 2 Après un examen, on interroge au hasard dix étudiants.

Les variables aléatoires $N_1, N_2, ..., N_{10}$ modélisent la note sur 20 obtenue à l'examen par chacun d'entre eux. On admet que ces variables sont indépendantes et suivent la même loi binomiale de paramètres (20; 0,615). Soit S la variable définie par $S=N_1+N_2+\cdots+N_{10}$.

- **1.** Calculer l'espérance E(S) et la variance V(S) de la variable aléatoire S.
- **2.** On considère la variable aléatoire $M=\frac{S}{10}$. Que modélise cette variable M dans le contexte de l'exercice ?
- **3.** Justifier que E(M) = 12,3 et V(M) = 0,473 55.
- **4.** Justifier que la probabilité que la moyenne des notes de dix étudiants pris au hasard soit strictement comprise entre 10,3 et 14,3 est d'au moins 80 %.

L'inégalité de concentration est juste un raccourci pour Bienaymé-Tchebychev dans le cas où on a un échantillon. On n'est pas obligés de s'en servir, comme on le verra en exemple 2.

Exemple 1

a. On considère X_i , variable égale à 1 si la i —ème personne interrogée compte voter pour A, et 0 sinon. X_i suit la loi de Bernoulli de paramètre 0,2.

Son espérance est 0,2 et sa variance est $V = 0.2 \times 0.8 = 0.16$.

 $M_n = \frac{X_1 + X_2 + \dots + X_n}{n}$ correspond alors au résultat du sondage : c'est la proportion de personnes interrogées qui compte voter pour A.

proportion de personnes interrogées qui compte voter pour A.
$$p(|M_n - 0.2| \ge 0.03) \le \frac{0.16}{1000 \times 0.03^2} \Leftrightarrow p(|M_n - 0.2| \ge 0.03) \Leftrightarrow \frac{\textbf{0.16}}{\textbf{0.9}}$$

ce dernier résultat étant à peu près égal à 18%.

Cela signifie en particulier que le résultat du sondage a 82% de probabilité d'être dans l'intervalle]17% ;23%[, ce qui est acceptable. Les « vrais » sondages font mieux.

b. Ici, les X_i suivent une loi de Bernoulli de paramètre 0,05, donc $V = 0.05 \times 0.95 = 0.0475$.

$$p(|M_n - 0.05| \ge 0.03) \le \frac{0.0475}{1000 \times 0.03^2} \Leftrightarrow p(|M_n - 0.05| \ge 0.03) \Leftrightarrow \frac{\mathbf{0.0475}}{\mathbf{0.9}}$$

ce qui fait **environ 5**%.

Le résultat du sondage a 95% de probabilité d'être dans l'intervalle]2% ;8%[, encore heureux.

Exemple 2

- **1.** On a $E(N_1) = 20 \times 0.615 =$ **12**, **3** et $V(N_1) = 20 \times 0.615 \times 0.385 =$ **4**, **735 5**. Ainsi, $E(S) = 10 \times E(N_1) =$ **123** et $V(S) = 10 \times V(N_1) =$ **47**, **355**.
- **2.** *S* représente la somme des 10 notes, donc *M* correspond à la **moyenne des 10 notes**.
- 3. D'après la linéarité de l'espérance :

$$E(M) = E\left(\frac{S}{10}\right) = \frac{E(S)}{10} = \frac{123}{10} = 12,3$$

D'après la règle de calcul sur la variance :

$$V(M) = V\left(\frac{S}{10}\right) = \frac{V(S)}{10^2} = \frac{47,355}{100} = \mathbf{0,473.55}$$

4. L'intervalle]10,3; 14,3 [est centré sur 12,3 avec $\delta = 2$.

Attention : on peut soit appliquer Bienaymé-Tchebychev avec la variable M, dont on connaît maintenant l'espérance et la variance, soit appliquer l'inégalité de concentration sur les N_i .

• Avec Bienaymé-Tchebychev sur la variable M :

$$p(|M-12,3|<2) \le 1 - \frac{0,47355}{2^2}$$

ce dernier résultat valant environ 0,88, ce qui résout la question.

• Avec l'inégalité de concentration sur les N_i , d'espérance 12,3 et de variance 4,735 5 :

$$p(|M-12,3|<2) \le \mathbf{1} - \frac{\mathbf{4,7355}}{\mathbf{10} \times \mathbf{2}^2}$$

et ce résultat correspond presque au même calcul et vaut aussi 0,88.

4. Loi faible des grands nombres

Soit
$$(X_1, X_2, ..., X_n)$$
 un échantillon. Soit $M_n = \frac{X_1 + \cdots + X_n}{n}$ sa moyenne.

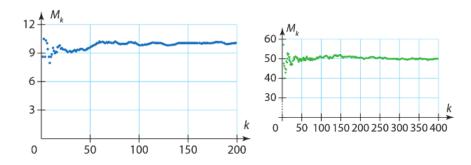
Pour tout $\delta > 0$, on a :

$$\lim_{n\to+\infty}p(|M_n-\mu|\geq\delta)=0$$

La loi des grands nombres dit que lorsque le nombre de tirages tend vers $+\infty$, la probabilité que l'échantillon s'éloigne de sa moyenne tend vers 0.

Remarque : en revanche, on ne sait rien sur la vitesse de convergence : la loi des grands nombres ne dit pas « à quelle vitesse » la moyenne de l'échantillon se rapprochera de l'espérance attendue.

Exemples : dans chaque cas, on considère un échantillon $(X_1; X_2; ...; X_n)$ de variables aléatoires d'espérance μ , et on représente la moyenne M_k des k premiers échantillons. Estimer μ .



Attention : cette loi ne permet pas de prévoir le résultat d'expériences.

Par exemple, si on lance 9 pièces et qu'on obtient « pile », la loi des grands nombres ne dit pas que le $10^{\text{ème}}$ lancer donnera « face » pour rééquilibrer. Elle dit juste qu'avec un grand nombre de lancers, il devient de plus en plus improbable de s'écarter de la moyenne attendue.

Ainsi, la probabilité d'obtenir 9 « pile », comme supposé précédemment, n'est même pas de 1%.

Dans le premier cas, $\mu \approx 10$, et dans le deuxième cas, $\mu \approx 50$.