Correction de l'exercice sur les variables aléatoires

- **1.** Un tirage, ici avec remise, correspond à un triplet : il y en a donc $8^3 = 512$.
- **2a.** Sans répétition, c'est un arrangement : il y en a $8 \times 7 \times 6 = 336$.
- **2b.** Par soustraction, il y a 512 336 = 176 tirages comportant au moins une répétition de numéro.
- **3**. X_1 peut valoir 1,2,3 ...,8 avec équiprobabilité. On dresse le tableau suivant :

	x_i	1	2	3	4	5	6	7	8
	$P(X_1 = x_i)$	1	1	1	1	1	1	1	1
r		8	8	8	8	8	8	8	8

4.

$$E(X_1) = 1 \times \frac{1}{8} + 2 \times \frac{1}{8} + \dots + 8 \times \frac{1}{8} = \frac{1+2+3+4+5+6+7+8}{8} = 4,5$$

- **5.** $E(S) = E(X_1 + X_2 + X_3)$
 - $=E(X_1)+E(X_2)+E(X_3)$ par linéarité de l'indépendance
 - $= 3 \times E(X_1)$ car les trois variables aléatoires suivent la même loi
 - = 13.5
- **6.** S = 24 correspond à un unique tirage : (8,8,8). Ainsi :

$$p(S = 24) = \frac{1}{512}$$

7. Les tirages qui permettent de gagner un lot ne peuvent comporter que des 6 ou plus. Ce sont :

$$(8,8,8); (7,8,8); (8,7,8); (8,8,7); (6,8,8); (8,6,8); (8,8,6); (7,7,8); (7,8,7); (8,7,7)$$

On en compte bien 10.

8. Ainsi, la probabilité de gagner un lot est :

$$p(S \ge 22) = \frac{10}{512} = \frac{5}{256}$$