Correction

Exercice 1 Soit P(n) la propriété à démontrer. Soit a > 0.

<u>Initialisation</u>: pour n = 0, $(1 + a)^0 = 1 \ge 1 + 0 \times a$, donc P(0) est vraie.

<u>Hérédité</u> : Soit $n \in \mathbb{N}$. Supposons P(n) vraie : $(1+a)^n \ge 1 + na$.

Démontrons $P(n+1): (1+a)^{n+1} \ge 1 + (n+1)a$

On calcule : $(1+a)^{n+1} = (1+a)^n \times (1+a) \ge (1+na) \times (1+a)$ (par hypothèse de récurrence)

 $\geq 1 + a + na + na^2$

 $\geq 1 + (n+1)a + na^2$ (or na^2 est positif)

 $\geq 1 + (n+1)a$

<u>Conclusion</u>: P(0) est vraie et pour tout $n \in \mathbb{N}$, $P(n) \Rightarrow P(n+1)$. La propriété est vraie pour tout $n \in \mathbb{N}$.

Exercice 2 Soit P(n) la propriété à démontrer.

<u>Initialisation</u>: pour n = 0, $3 \times 2^0 + 1 = 3 \times 1 + 1 = 4$, donc P(0) est vraie.

<u>Hérédité</u> : Soit $n \in \mathbb{N}$. Supposons P(n) vraie : $u_n = 3 \times 2^n + 1$.

Démontrons $P(n + 1) : u_{n+1} = 3 \times 2^{n+1} + 1$.

D'après la définition de la suite, $u_{n+1} = 2u_n - 1$

 $= 2 \times (3 \times 2^n + 1) - 1$ (par hypothèse de récurrence)

 $= 3 \times 2^n \times 2 + 2 - 1$

 $= 3 \times 2^{n+1} + 1$

<u>Conclusion</u>: P(0) est vraie et pour tout $n \in \mathbb{N}$, $P(n) \Rightarrow P(n+1)$. La propriété est vraie pour tout $n \in \mathbb{N}$.

Exercice 3 Soit P(n): $v_{n+1} \le v_n$ la propriété à démontrer.

<u>Initialisation</u>: pour n = 0, $v_0 = 8$ et $v_1 = \frac{1}{4} \times 8 + 3 = 2 + 3 = 5 \le v_0$, donc P(0) est vraie.

<u>Hérédité</u> : Soit $n \in \mathbb{N}$. Supposons P(n) vraie : $v_{n+1} \le v_n$.

Démontrons $P(n+1): v_{n+2} \leq v_{n+1}$.

On part de l'hypothèse de récurrence :

 $v_{n+1} \leq v_n$

 $\Longleftrightarrow \frac{1}{4} \, v_{n+1} \le \frac{1}{4} \, v_n$

 $\Longleftrightarrow \frac{1}{4}v_{n+1} + 3 \le \frac{1}{4}v_n + 3$

 $\Longleftrightarrow v_{n+2} \leq v_{n+1}$

Conclusion : P(0) est vraie et pour tout $n \in \mathbb{N}$, $P(n) \Rightarrow P(n+1)$. La propriété est vraie pour tout $n \in \mathbb{N}$.

Exercice 4 a. $u_0 = 2500$ et $u_1 = 2500 \times 0.9 + 100 = 2350$

b. 10% des arbres sont coupés, donc il en reste 90%, d'où la multiplication par 0,9.

On plante ensuite 100 arbres, d'où l'addition avec 100.

c. Soit P(n) la propriété à démontrer.

<u>Initialisation</u>: pour n = 0, $u_0 = 2500$ et $u_1 = 2350$, on a bien $1000 \le u_1 \le u_0$.

<u>Hérédité</u>: Soit $n \in \mathbb{N}$. Supposons P(n) vraie: $1 \ 000 \le u_{n+1} \le u_n$

Démontrons $P(n+1): 1\ 000 \le u_{n+2} \le u_{n+1}$

On part de l'hypothèse de récurrence : $1 \ 000 \le u_{n+1} \le u_n$

 $\Leftrightarrow 0.9 \times 1\ 000 \leq 0.9 \times u_{n+1} \leq 0.9 \times u_n$

```
\Leftrightarrow 900 + 100 \le 0.9 \times u_{n+1} + 100 \le 0.9 \times u_n + 100
\Leftrightarrow 1\ 000 \le u_{n+2} \le u_{n+1}
```

<u>Conclusion</u>: P(0) est vraie et pour tout $n \in \mathbb{N}$, $P(n) \Rightarrow P(n+1)$. La propriété est vraie pour tout $n \in \mathbb{N}$.