Interrogation écrite

Exercice 1 (2 pts) Montrer l'inégalité de Bernoulli : pour tout $a \in \mathbb{R}$ strictement positif et pour tout $n \in \mathbb{N}$,

$$(1+a)^n \ge 1 + na$$

Exercice 2 (2 pts) Soit (u_n) la suite définie par $u_0=4$ et, pour tout $n\in\mathbb{N}$, $u_{n+1}=2u_n-1$. Montrer par récurrence que pour tout $n\in\mathbb{N}$, $u_n=3\times 2^n+1$

Exercice 3 (2 pts) Soit (v_n) la suite définie par $v_0=8$ et, pour tout $n\in\mathbb{N}$, $v_{n+1}=\frac{1}{4}v_n+3$

Montrer par récurrence que la suite (v_n) est décroissante.

Exercice 4 (4 pts + 0,5 pts bonus)

En 2020, il y a 2 500 arbres dans une forêt. Mais on prévoit que chaque année, 10% des arbres soient coupés et 100 arbres soient replantés. On note u_n le nombre d'arbres en 2020 + n.

- **1.** Donner la valeur de u_0 et calculer u_1 .
- **2.** Justifier que pour tout $n \in \mathbb{N}$, $u_{n+1} = 0.9u_n + 100$.
- **3.** Montrer par récurrence que pour tout $n \in \mathbb{N}$, $1000 \le u_{n+1} \le u_n$.
- **4. (bonus)** Recopier et compléter ce programme en Python pour qu'il affiche le nombre d'arbres en 2050.

```
u = 2500
for i in range (...):
    u = ...
print (u)
```

Interrogation écrite

Exercice 1 (2 pts) Montrer l'inégalité de Bernoulli : pour tout $a \in \mathbb{R}$ strictement positif et pour tout $n \in \mathbb{N}$,

$$(1+a)^n \ge 1+na$$

Exercice 2 (2 pts) Soit (u_n) la suite définie par $u_0=4$ et, pour tout $n\in\mathbb{N}$, $u_{n+1}=2u_n-1$. Montrer par récurrence que pour tout $n\in\mathbb{N}$, $u_n=3\times 2^n+1$

Exercice 3 (2 pts) Soit (v_n) la suite définie par $v_0=8$ et, pour tout $n\in\mathbb{N}$, $v_{n+1}=\frac{1}{4}v_n+3$

Montrer par récurrence que la suite (v_n) est décroissante.

Exercice 4 (4 pts + 0,5 pts bonus)

En 2020, il y a 2 500 arbres dans une forêt. Mais on prévoit que chaque année, 10% des arbres soient coupés et 100 arbres soient replantés. On note u_n le nombre d'arbres en 2020 + n.

- **1.** Donner la valeur de u_0 et calculer u_1 .
- **2.** Justifier que pour tout $n \in \mathbb{N}$, $u_{n+1} = 0.9u_n + 100$.
- **3.** Montrer par récurrence que pour tout $n \in \mathbb{N}$, $1000 \le u_{n+1} \le u_n$.
- **4. (bonus)** Recopier et compléter ce programme en Python pour qu'il affiche le nombre d'arbres en 2050.

```
u = 2500
for i in range (...):
    u = ...
print (u)
```