Correction des exercices de révision type Bac sur les suites

Exercice 1

1.
$$u_1 = 0.95 \times 10\,000 + 200 = 9\,700$$
 et $u_2 = 0.95 \times 9\,700 + 200 = 9\,415$

2a. Initialisation: pour
$$n=0$$
, on a bien $u_0=10\ 000>4\ 000$

<u>Hérédité</u> : Soit $n \in \mathbb{N}$, supposons que $u_n > 4000$

Alors
$$0.95u_n > 0.95 \times 4000$$

$$\Leftrightarrow$$
 0,95 u_n + 200 > 3 800 + 200

$$\Leftrightarrow u_{n+1} > 4000$$

<u>Conclusion</u>: Pour tout $n \in \mathbb{N}$, $u_n > 4000$

2b. La suite (u_n) est décroissante et minorée par $4\,000$, donc elle converge.

3a.
$$v_0 = u_0 - 4\,000 = 10\,000 - 4\,000 = 6\,000$$

3b. Soit $n \in \mathbb{N}$, calculons :

$$\frac{v_{n+1}}{v_n} = \frac{u_{n+1} - 4\,000}{u_n - 4\,000} = \frac{0.95u_n + 200 - 4\,000}{u_n - 4\,000} = \frac{0.95u_n - 3\,800}{u_n - 4\,000} = \frac{0.95(u_n - 4\,000)}{u_n - 4\,000} = 0.95$$

On a montré que le rapport était constant égal à 0,95,

donc (v_n) est géométrique, de raison 0,95.

3c. D'après les deux questions précédentes, pour tout $n \in \mathbb{N}$,

$$v_n = 6\,000 \times 0.95^n$$

Or
$$v_n = u_n - 4\,000 \Leftrightarrow u_n = 4\,000 + v_n = 4\,000 + 6\,000 \times 0.95^n$$

3d.
$$(v_n)$$
 est une suite géométrique de raison comprise entre -1 et 1.

Sa limite est donc 0 et celle de (u_n) est 4 000.

4. D'après l'énoncé, le nombre d'individus peut être représenté par les valeurs de la suite (u_n) , dont la limite est $4\,000$ d'après la question précédente, ce qui est moins de la moitié de $10\,000$. L'affirmation est vraie.

Exercice 2

Avant d'essayer de démontrer une réponse, vous pouvez faire des essais à la calculatrice pour avoir une idée, ou représenter les suites à la calculatrice pour essayer de voir les limites.

1. $\lim_{n \to +\infty} \left(\frac{1}{4}\right)^n = 0$ car il s'agit d'une suite géométrique de raison comprise entre -1 et 1.

Par somme ou par différence, (u_n) et (v_n) convergent toutes les deux vers 1.

Donc (w_n) converge vers 1 d'après le théorème des gendarmes. Réponse B.

- **2.** Pour $n \in \mathbb{N}$, $u_{n+1} = e^{2(n+1)+1} = e^{2n+2+1} = e^{2n} \times e^2 \times e^1 = e^2 \times e^{2n} \times e^1 = e^2 \times e^{2n+1} = e^2 u_n$ Ainsi, la suite est géométrique de raison e^2 . Réponse C.
- **3.** (v_n) converge vers 0 et (u_n) diverge vers $+\infty$, donc d'après la règle du quotient de limites, la suite $\left(\frac{v_n}{u_n}\right)$ converge vers 0. Réponse B.
- 4. Plus difficile : il s'agit d'une forme indéterminée, pas facile à factoriser.

On va essayer d'utiliser la règle de calcul sur les puissances : $\frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n$. Pour $n \in \mathbb{N}$:

$$u_n = \frac{1+2^n}{3+5^n} = \frac{2^n(\frac{1}{2^n}+1)}{5^n(\frac{3}{5^n}+1)} = \frac{2^n}{5^n} \times \frac{\frac{1}{2^n}+1}{\frac{3}{5^n}+1} = \left(\frac{2}{5}\right)^n \times \frac{\frac{1}{2^n}+1}{\frac{3}{5^n}+1}$$

Or $\lim_{n\to+\infty} \left(\frac{2}{5}\right)^n = 0$ car il s'agit d'une suite géométrique de raison comprise entre -1 et 1.

Le numérateur $\frac{1}{2^n} + 1$ et le dénominateur $\frac{3}{5^n} + 1$ tendent tous les deux vers 1, donc la fraction tend vers 1. Par produit, (u_n) converge vers 0.

Exercice 3

A1. La fonction f est un produit, que l'on dérive en posant par exemple u(x) = 2x et v(x) = 1 - x.

On a alors u'(x) = 2 et v'(x) = -1. Ainsi, pour tout $x \in \left[0; \frac{1}{2}\right]$:

$$f'(x) = 2 \times (1 - x) + 2x \times (-1) = 2 - 2x - 2x = -4x + 2$$

Cette fonction affine est positive sur $]-\infty;2]$ puis négative sur $[2;+\infty[$.

Donc f'(x) est positif pour tout $x \in \left[0; \frac{1}{2}\right]$ et f est croissante sur cet intervalle.

A2. <u>Initialisation</u> : pour n=0, on a $u_0=0.3$ et on calcule $u_1=2\times 0.3(1-0.3)=2\times 0.3\times 0.7=0.42$.

On a bien $0 \le u_0 \le u_1 \le \frac{1}{2}$

<u>Hérédité</u> : Soit $n \in \mathbb{N}$, supposons que $0 \le u_n \le u_{n+1} \le \frac{1}{2}$

Ici, il est beaucoup, beaucoup plus facile d'appliquer la fonction f qui est croissante, que de recréer les opérations de la formule de récurrence. Quand une suite est définie à l'aide d'une fonction croissante, il faut toujours penser à appliquer la fonction !

On applique la fonction f qui est croissante : $f(0) \le f(u_n) \le f(u_{n+1}) \le f(\frac{1}{2})$

Et ainsi $f(0) \le u_{n+1} \le u_{n+2} \le f(\frac{1}{2})$

Or
$$f(0) = 2 \times 0 \times (1 - 0) = 0$$
 et $f(\frac{1}{2}) = 2 \times \frac{1}{2} \times (1 - \frac{1}{2}) = \frac{1}{2}$

Ainsi, on a bien $0 \le u_{n+1} \le u_{n+2} \le \frac{1}{2}$

Conclusion: Pour tout $n \in \mathbb{N}$, $0 \le u_n \le u_{n+1} \le \frac{1}{2}$

A3. (u_n) est croissante et majorée, donc elle converge vers une limite ℓ .

La fonction f est continue, donc d'après le théorème du point fixe, on a $f(\ell) = \ell$, ce qui implique :

$$2\ell(1-\ell) = \ell \Leftrightarrow 2\ell - 2\ell^2 = \ell \Leftrightarrow \ell - 2\ell^2 = 0 \Leftrightarrow \ell(1-2\ell) = 0$$

Cette équation produit nul admet les deux solutions 0 et $\frac{1}{2}$ qu'on a trouvées en **A2**. Or (u_n) est croissante et

 $u_0=0.3$, donc (u_n) ne peut pas converger vers 0. Ainsi, $\ell=\frac{1}{2}$.

B1a. On a donc pour tout n entier naturel, $P_{n+1} - P_n = P_n(1-0 \times P_n) \Leftrightarrow P_{n+1} - P_n = P_n \Leftrightarrow P_{n+1} = 2P_n$ Ainsi, (P_n) est une suite géométrique de raison 2.

B1b. (P_n) est une suite géométrique de premier terme positif et de raison supérieure à 1, donc sa limite est $+\infty$. On pouvait aussi remarquer que pour $n \in \mathbb{N}$, $P_n = 3 \times 2^n$.

B2a. $v_0 = 0.1 \times P_0 = 0.3$.

Et pour $n \in \mathbb{N}$, on sait que $P_{n+1} - P_n = P_n(1 - 0.2P_n) \Leftrightarrow P_{n+1} = P_n(1 - 0.2P_n) + P_n = P_n(2 - 0.2P_n)$ donc $v_{n+1} = 0.1 \times P_{n+1} = 0.1P_n(2 - 0.2P_n) = 0.1P_n \times 2(1 - 0.1P_n) = v_n \times 2(1 - v_n) = 2v_n(1 - v_n)$

B2b. (v_n) a le même premier terme et la même formule de récurrence que (u_n) .

Elle converge donc vers la même limite, qui est 0,5.

Or $P_n = 10v_n$ donc (P_n) converge vers 5, et la population se stabilise autour de 5 000 individus.

Exercice 4

1. Les deux fournisseurs ayant le monopole, la somme de leurs parts de marché doit être de 100%, soit 1. Ainsi, $a_n+b_n=1$.

2. Chaque année, Electic perd 5% de ses clients, d'où le $0.95a_n$. Il gagne 15% des clients de Energo, soit $0.15b_n$.

3. Pour tout n entier naturel, $b_n = 1 - a_n$.

 $\text{Ainsi, } a_{n+1} = 0.95 a_n + 0.15 b_n = 0.95 a_n + 0.15 (1-a_n) = 0.95 a_n + 0.15 - 0.15 a_n = 0.8 a_n + 0.15.$

4a.

4b. La calculatrice fournit $a_0 = 0.729$ (attention à l'arrondi !)

5a. <u>Initialisation</u>: pour n = 0, on a $a_0 = 0.55$ et $a_1 = 0.59$ donc $a_0 \le a_1 \le 0.75$.

<u>Hérédité</u> : Soit $n \in \mathbb{N}$, supposons que $a_n \le a_{n+1} \le 0.75$

Alors $0.8a_n \le 0.8a_{n+1} \le 0.8 \times 0.75$

$$\Leftrightarrow 0.8a_n + 0.15 \le 0.8a_{n+1} + 0.15 \le 0.6 + 0.15$$

$$\Leftrightarrow a_{n+1} \le a_{n+2} \le 0.75$$

Conclusion: Pour tout $n \in \mathbb{N}$, $a_n \le a_{n+1} \le 0.75$

5b. Nous venons de montrer que (a_n) est croissante et majorée, elle converge donc vers une limite ℓ . La suite (a_n) est définie par $a_{n+1} = f(a_n)$ où f(x) = 0.8x + 0.15. f est une fonction continue, donc d'après

le théorème du point fixe, on a $f(\ell) = \ell \Leftrightarrow 0.8\ell + 0.15 = \ell \Leftrightarrow 0.15 = 0.2\ell \Leftrightarrow \ell = 0.75$.

5c. Cela signifie que la part de marché d'Electic croîtra et se rapprochera de plus en plus de 75% à long terme.

Exercice 5

1. On calcule:

$$u_1 = \frac{2 \times 2 + 1}{2 + 2} = \frac{5}{4} = 1,25$$

2a.

$$a_0 = \frac{u_0}{u_0 - 1} = \frac{2}{2 - 1} = 2$$
 $a_1 = \frac{1,25}{1,25 - 1} = \frac{1,25}{0,25} = 5$

2b. A priori, ce n'est pas une démonstration par récurrence. Soit $n \in \mathbb{N}$.

$$a_{n+1} = \frac{u_{n+1}}{u_{n+1} - 1} = \frac{\frac{2u_n + 1}{u_n + 2}}{\frac{2u_n + 1}{u_n + 2} - 1} = \frac{\frac{2u_n + 1}{u_n + 2}}{\frac{2u_n + 1 - (u_n + 2)}{u_n + 2}} = \frac{2u_n + 1}{2u_n + 1 - u_n - 2} = \frac{2u_n + 1}{u_n - 1}$$

Cela semble coincé. On peut essayer de calculer $3a_n - 1$ en espérant retomber sur le même résultat.

$$3a_n - 1 = \frac{3u_n}{u_n - 1} - 1 = \frac{3u_n - (u_n - 1)}{u_n - 1} = \frac{2u_n + 1}{u_n - 1}$$

Ainsi, $a_{n+1} = 3a_n - 1$.

2c. Pour $n \in \mathbb{N}^*$, soit P(n) la propriété à démontrer.

<u>Initialisation</u>: pour n=1, on a bien $a_1=5$ et $3\times 1-1=2$, donc $a_1\geq 3\times 1-1$. P(1) est vraie.

<u>Hérédité</u> : Soit $n \in \mathbb{N}$. Supposons que P(n) : $a_n \ge 3n - 1$ est vraie.

Démontrons $P(n + 1) : a_{n+1} \ge 3(n + 1) - 1$.

Par hypothèse de récurrence :

$$a_n \ge 3n - 1$$

$$\Leftrightarrow 3a_n \ge 3(3n - 1)$$

$$\Leftrightarrow 3a_n - 1 \ge 9n - 3 - 1$$

$$\Leftrightarrow a_{n+1} \ge 9n - 4$$

Or 3(n+1) - 1 = 3n + 2.

De plus, $9n-4 \ge 3n+2 \Leftrightarrow 6n \ge 6 \Leftrightarrow n \ge 1$, donc pour n supérieur ou égal à 1 comme supposé, on a bien $9n-4 \ge 3n+2$.

Donc $a_{n+1} \ge 9n - 4 \ge 3n + 2$: P(n+1) est vérifiée.

Conclusion: pour tout $n \in \mathbb{N}^*$, $a_n \ge 3n - 1$.

2d. On sait que $\lim_{n \to +\infty} 3n - 1 = +\infty$, donc d'après le théorème de comparaison, $\lim_{n \to +\infty} a_n = +\infty$.

3a. On reprend la formule définissant (a_n) et on effectue un produit en croix, puis on factorise par u_n . Pour $n \in \mathbb{N}$:

$$a_n = \frac{u_n}{u_n - 1}$$

$$\Leftrightarrow a_n(u_n - 1) = u_n$$

$$\Leftrightarrow a_n u_n - a_n = u_n$$

$$\Leftrightarrow a_n u_n - u_n = a_n$$

$$\Leftrightarrow u_n(a_n - 1) = a_n$$

$$\Leftrightarrow u_n = \frac{a_n}{a_n - 1}$$

3b. On sait que $\lim_{n\to+\infty}a_n=+\infty$. L'expression de u_n nous donne une forme indéterminée, mais on simplifie par (a_n) :

$$u_n = \frac{a_n}{a_n - 1} = \frac{a_n}{a_n \left(1 - \frac{1}{a_n}\right)} = \frac{1}{1 - \frac{1}{a_n}}$$

Or par quotient, $\lim_{n\to+\infty}\frac{1}{a_n}=0$, donc par différence, $\lim_{n\to+\infty}1-\frac{1}{a_n}=1$ et par quotient, $\lim_{n\to+\infty}\frac{1}{1-\frac{1}{a_n}}=1$.

4a. L'algorithme calculer le plus petit indice n tel que $u_n < 1 + p$, ce qui arrivera nécessairement car u_n est décroissante et tend vers 1, ainsi que la valeur de u_n correspondante.

4b. Avec un tableau de valeurs, on trouve $u_5 \approx 1,0027 > 1,001$ et $u_6 \approx 1,0009 < 1,001$. Ainsi, n = 6.

Exercice 6

1. On a $u_1 = 0.9 \times 0.3 \times (1 - 0.3) = 0.189$ et $u_2 = 0.9 \times 0.189 \times (1 - 0.189) \approx 0.138$, soit respectivement 189 puis 138. Sale temps pour les tortues.

2a. u_{n+1} est un produit de trois facteurs positifs, donc positif.

De plus, $(1 - u_n)$ est compris entre 0 et 1, donc $u_{n+1} = 0.9u_n(1 - u_n) \le 0.9u_n$.

On a bien $0 \le u_{n+1} \le 0.9u_n$.

2b. <u>Initialisation</u>: pour n = 0, on a $0.3 \times 0.9^0 = 0.3$, donc $u_0 \le 0.3 \times 0.9^0$.

<u>Hérédité</u> : Soit $n \in \mathbb{N}$, supposons que $0 \le u_n \le 0.3 \times 0.9^n$

Or on sait d'après **2a** que $0 \le u_{n+1} \le 0.9u_n$.

Ainsi,
$$0 \le u_{n+1} \le 0.9(0.3 \times 0.9^n)$$

$$\Leftrightarrow 0 \le u_{n+1} \le 0.3 \times 0.9^n \times 0.9$$

$$\Leftrightarrow 0 \le u_{n+1} \le 0.3 \times 0.9^{n+1}$$

<u>Conclusion</u>: Pour tout $n \in \mathbb{N}$, $0 \le u_n \le 0.3 \times 0.9^n$

2c. La suite de terme général 0.3×0.9^n est géométrique de raison 0.9, comprise entre -1 et 1.

Elle converge donc vers 0. Ainsi, (u_n) converge vers 0 d'après le théorème des gendarmes.

Cela veut dire qu'à long terme, les tortues vont disparaître !!!

Exercice 7

1a.
$$u_1 = u_0 + v_0 = 1 + 1 = 2$$
 et $v_1 = 2u_0 + v_0 = 2 + 1 = 3$

1b. Pour
$$n \in \mathbb{N}$$
, $v_{n+1} - v_n = 2u_n + v_n - v_n = 2u_n$

mais il est admis que la suite (u_n) est strictement positive.

Donc $v_{n+1} - v_n$ est strictement positif et (v_n) est strictement croissante.

Comme $v_0 = 1$, on en déduit que pour tout $n \in \mathbb{N}$, $v_n \ge 1$

1c. Initialisation: pour
$$n=0$$
, on a bien $u_0=1\geq 0+1$

<u>Hérédité</u> : Soit $n \in \mathbb{N}$, supposons que $u_n \ge n + 1$. Alors :

$$u_n + v_n \ge n + 1 + v_n$$

$$\Rightarrow u_{n+1} \ge n+1+1$$
 (d'après la question précédente)

$$\Rightarrow u_{n+1} \ge n+2$$

<u>Conclusion</u>: Pour tout $n \in \mathbb{N}$, $u_n \ge n + 1$

1d. D'après le théorème de comparaison, la limite de (u_n) est $+\infty$.

2a. Pour tout $n \in \mathbb{N}$, on a bien $-1 \le (-1)^{n+1} \le 1$

En divisant par
$$u_n^2$$
, on trouve $\frac{-1}{u_n^2} \le \frac{(-1)^{n+1}}{u_n^2} \le \frac{1}{u_n^2}$

2b. La limite de (u_n) est $+\infty$, donc la limite de (u_n^2) est $+\infty$ par produit.

Ainsi, les limites de $\frac{-1}{u_n^2}$ et $\frac{1}{u_n^2}$ sont 0 par quotient.

D'après le théorème des gendarmes et la question 2a,

$$\lim_{n\to\infty}\frac{(-1)^{n+1}}{u_n^2}=0$$

2c. La limite de (r_n^2) est donc 2 par somme. (r_n) étant strictement positive, en appliquant la fonction racine carrée, on en déduit que (r_n) tend vers $\sqrt{2}$.

2d. Pour $n \in \mathbb{N}$,

$$r_{n+1} = \frac{v_{n+1}}{u_{n+1}} = \frac{2u_n + v_n}{u_n + v_n} = \frac{2 + \frac{v_n}{u_n}}{1 + \frac{v_n}{u_n}} = \frac{2 + r_n}{1 + r_n}$$

2e. 5 est le premier indice n tel que la différence entre r_n et sa limite $\sqrt{2}$ est inférieure à 10^{-4} . (Le programme calcule les termes de (r_n) grâce à la formule trouvée en **2d** jusqu'à ce que la valeur trouvée soit suffisamment proche de $\sqrt{2}$).