Correction du devoir surveillé sur les suites

Exercice 1 (5 pts)

1. (2 pts) Pour tout entier naturel n non nul :

$$-1 \le \cos(n) \le 1$$

$$\Leftrightarrow 3 - 1 \le 3 + \cos(n) \le 3 + 1$$

$$\Leftrightarrow \frac{2}{n^2} \le \frac{3 + \cos(n)}{n^2} \le \frac{4}{n^2}$$

Or $\lim_{n\to+\infty}\frac{2}{n^2}=\lim_{n\to+\infty}\frac{4}{n^2}=0$. D'après le théorème des gendarmes, la suite (u_n) converge vers 0.

2. (1,5 pts) Pour tout
$$n \in \mathbb{N}^*$$
, $v_n = \frac{3n^2}{n+2} = \frac{n^2 \times 3}{n^2 (\frac{1}{n} + \frac{2}{n^2})} = \frac{3}{\frac{1}{n} + \frac{2}{n^2}}$

Or $\lim_{n\to+\infty}\frac{1}{n}+\frac{2}{n^2}=0$. Par quotient, (v_n) diverge vers $+\infty$. L'affirmation est fausse.

3. (1,5 pts)
$$w_0 = \frac{1}{2}$$
, $w_1 = \frac{3}{2}$, $w_2 = \frac{9}{2}$ et $w_3 = \frac{19}{2}$.

Ainsi, $\frac{w_1}{w_0} = \frac{w_2}{w_1} = 3$ mais $\frac{w_3}{w_2} = \frac{19}{9} \neq 3$. Le rapport entre un terme et le suivant n'est pas constant, donc la suite n'est pas géométrique.

Exercice 2 (9 pts)

- **1.** (0,5 pt) Chaque année, le nombre de panneaux diminue de 2%, ce qui revient bien à le multiplier par $1 \frac{2}{100} = 0,98$, puis on lui ajoute 250, ce qui correspond bien à la définition de la suite (u_n) .
- **2.** (1 pt) La calculatrice nous dit que u_n semble être strictement supérieur à 12 000 pour $n \ge 68$, donc ce sera à partir de l'année 2088.
- **3.** (1,5 pts) <u>Initialisation</u> : On a bien $u_0 = 10 \, 560 \le 12 \, 500$.

<u>Hérédité</u> : Soit $n \in \mathbb{N}$, on suppose que $u_n \le 12500$

Alors $0.98u_n \le 0.98 \times 12500 \Leftrightarrow 0.98u_n + 250 \le 12250 + 250 \Leftrightarrow u_{n+1} \le 12500$

Conclusion: Pour tout $n \in \mathbb{N}$, $u_n \le 12500$

4. (1,5 pts) Pour
$$n \in \mathbb{N}$$
, on calcule $u_{n+1} - u_n = 0.98u_n + 250 - u_n = 250 - 0.02u_n$

Or
$$u_n \le 12500 \Leftrightarrow -0.02u_n \ge -250 \Leftrightarrow 250 - 0.02u_n \ge 0$$

Ainsi, $u_{n+1} - u_n \ge 0$, et la suite (u_n) est croissante.

- **5.** (1 pt) La suite (u_n) est croissante et majorée par 12 500, donc d'après le théorème de convergence monotone, elle converge.
- **6a.** (1,5 pts) Soit $n \in \mathbb{N}$, on calcule :

$$\frac{v_{n+1}}{v_n} = \frac{u_{n+1} - 12\,500}{u_n - 12\,500} = \frac{0.98u_n + 250 - 12\,500}{u_n - 12\,500} = \frac{0.98u_n - 12\,250}{u_n - 12\,500} = \frac{0.98(u_n - 12\,500)}{u_n - 12\,500} = 0.98$$

Ainsi, (v_n) est géométrique de raison 0,98, son premier terme est $v_0 = u_0 - 12\,500 = -1\,940$

6b. (1 pt) Pour
$$n \in \mathbb{N}$$
, on a $v_n = -1940 \times 0.98^n$ et donc $u_n = 12500 - 1940 \times 0.98^n$

6c. (1 pt) -1 < 0.98 < 1 donc (v_n) converge vers 0. Ainsi, (u_n) converge vers 12 500.

Exercice 3 (7 pts)

1. (1 pt)
$$u_1 = f\left(\frac{1}{2}\right) = \frac{4 \times \frac{1}{2}}{1 + 3 \times \frac{1}{2}} = \frac{2}{\frac{5}{2}} = \frac{4}{5}$$

2. (1,5 pts) f est dérivable comme quotient de fonctions dérivables, et pour tout $x \in]-\frac{1}{3}$; $+\infty[$

$$f'(x) = \frac{4(1+3x) - 4x \times 3}{(1+3x)^2} = \frac{4}{(1+3x)^2}$$

f' est toujours positive, donc f est croissante.

3. (2 pts) <u>Initialisation</u>: $u_0 = \frac{1}{2}$ et $u_1 = \frac{4}{5}$ donc on a bien $\frac{1}{2} \le u_0 \le u_1 \le 2$

<u>Hérédité</u> : Soit $n \in \mathbb{N}$, supposons $\frac{1}{2} \le u_n \le u_{n+1} \le 2$

On applique la fonction f qui est (fort heureusement) croissante sur $[\frac{1}{2};2]:f(\frac{1}{2})\leq f(u_n)\leq f(u_{n+1})\leq f(2)$

Or
$$f\left(\frac{1}{2}\right) = \frac{4}{5} \ge \frac{1}{2}$$
 et $f(2) = \frac{4 \times 2}{1 + 3 \times 2} = \frac{8}{7} \le 2$

Ainsi,
$$\frac{4}{5} \le f(u_n) \le f(u_{n+1}) \le \frac{8}{7}$$
 et donc $\frac{1}{2} \le u_{n+1} \le u_{n+2} \le 2$

- **4.** (1 pt) La suite (u_n) est croissante et majorée par 2, donc d'après le théorème de convergence monotone, elle converge.
- **5.** (1,5 pts) La fonction f est continue, donc on peut appliquer le théorème du point fixe.

$$\ell = f(\ell) \Leftrightarrow \ell = \frac{4\ell}{1+3\ell} \Leftrightarrow \ell(1+3\ell) = 4\ell \Leftrightarrow \ell+3\ell^2 = 4\ell \Leftrightarrow 3\ell^2 - 3\ell = 0 \Leftrightarrow 3\ell(\ell-1) = 0$$

Cette équation produit a deux solutions : 0, mais qui ne peut être la limite de (u_n) , et 1.

Donc ℓ vaut 1.