Devoir surveillé sur les suites

Exercice 1 (5 pts) Pour chacune de ces affirmations, dire si elle est vraie ou fausse <u>en justifiant la réponse</u>. *Une réponse non justifiée ne sera pas prise en compte*.

1. On définit la suite (u_n) , pour tout entier naturel n non nul, par $u_n = \frac{3 + \cos(n)}{n^2}$

Affirmation 1: la suite (u_n) converge vers 0.

2. On définit la suite (v_n) pour tout $n \in \mathbb{N}$ par $v_n = \frac{3n^2}{n+2}$

Affirmation 2 : la limite de la suite (v_n) est $\frac{3}{2}$

3. On définit la suite (w_n) pour tout entier naturel n, par $w_n = n^2 + \frac{1}{2}$

Affirmation 3 : La suite (w_n) est géométrique.

Exercice 2 (9 pts)

Au 1^{er} janvier 2020, la centrale solaire de BigSun™ possédait 10 560 panneaux solaires.

On observe, chaque année, que 2% des panneaux solaires sont détériorés et nécessitent d'être retirés, tandis que 250 nouveaux panneaux sont installés.

On modélise l'évolution du nombre de panneaux solaires par la suite (u_n) définie par $u_0=10\,560$ et pour tout entier naturel n, $u_{n+1}=0.98u_n+250$, où u_n est le nombre de panneaux solaires au 1^{er} janvier de l'année 2020+n.

- 1. Expliquer en quoi cette modélisation correspond à la situation étudiée.
- **2.** On souhaite savoir à partir de quelle année le nombre de panneaux solaires sera strictement supérieur à 12 000. À l'aide de la calculatrice, donner la réponse à ce problème.
- **3.** Démontrer par récurrence que, pour tout entier naturel n, on a $u_n \le 12\,500$.
- **4.** Démontrer que la suite (u_n) est croissante.
- **5.** En déduire que la suite (u_n) converge.
- **6.** On définit la suite (v_n) par $v_n = u_n 12\,500$ pour tout entier naturel n.
 - **a.** Démontrer que la suite (v_n) est géométrique. Préciser son premier terme et sa raison.
 - **b.** En déduire, pour tout $n \in \mathbb{N}$, l'expression de u_n en fonction de n.
 - **c.** Déterminer la limite de (u_n) .

Exercice 3 (7 pts)

Soit f la fonction définie sur l'intervalle $]-\frac{1}{3}$; $+\infty[$ par $f(x)=\frac{4x}{1+3x}$

On considère la suite (u_n) définie par $u_0 = \frac{1}{2}$ et pour tout entier naturel n, $u_{n+1} = f(u_n)$

- **1.** Calculer u_1 .
- **2.** Montrer que f est croissante sur l'intervalle $]-\frac{1}{3}$; $+\infty[$
- **3.** Montrer par récurrence que pour tout entier naturel n, on a $\frac{1}{2} \le u_n \le u_{n+1} \le 2$
- **4.** En déduire que la suite (u_n) est convergente.
- **5.** On appelle ℓ la limite de la suite (u_n) . En justifiant, déterminer la valeur de ℓ .