Correction de l'interrogation écrite sur les probabilités

Partie I (4,5 pts)

Notez que le test est censé être « positif » si la pièce est défectueuse, un peu comme avec une maladie.

- **1.** (1 pt) On a des probabilités sachant D et on connaît p(D), donc l'arbre doit commencer par D.
- **2. a.** (1 pt) Calculons $p(D \cap T) = p(D) \times p_D(T) = 0.05 \times 0.98 = 0.049$
- **b.** (1,5 pts) On applique la formule des probabilités totales. Notez que $p_{\bar{D}}(T)=1-0.97=0.03$.

$$p(T) = p(D \cap T) + p(\overline{D} \cap T) = p(D) \times p_D(T) + p(\overline{D}) \times p_{\overline{D}}(T) = 0.05 \times 0.98 + 0.95 \times 0.03 = 0.049 + 0.028 5 = 0.077 5$$

3. (1 pt) Cela fait beaucoup de mots pour expliquer qu'il faut calculer $p_T(D)$.

$$p_T(D) = \frac{p(D \cap T)}{p(T)} = \frac{p(D) \times p_D(T)}{p(T)} = \frac{0,049}{0,0775} \approx 0,632$$

Partie II (4 pts)

1. (1 pt) On répète 30 fois, de façon indépendante, une épreuve de Bernoulli (prendre une pièce et regarder si elle est défectueuse) de paramètre 0,05.

Ainsi, X suit la loi binomiale de paramètres n=30 et p=0.05.

2. (1 pt) Il s'agit de calculer la probabilité de l'événement $(X \ge 1)$, qui est le contraire de (X = 0).

On calcule (à l'aide de la calculatrice) $p(X \ge 1) = 1 - p(X = 0) \approx 1 - 0.21 \approx 0.79$

3. (1 pt)
$$p(X \in]2; 10]$$
) = $p(2 < X \le 10) = p(3 \le X \le 10)$ (pour les possesseurs de Numworks) = $p(X \le 10) - p(X \le 2)$ (pour le reste du monde) ≈ 0.19

4. (1 pt) On sait que $E(X) = 30 \times 0.05 = 1.5$.

Cela signifie qu'en moyenne, on trouve une pièce défecteuse et demi lorsqu'on en prend 30.

Partie III (1,5 pts)

On a ici
$$p(X = 0) = (1 - 0.05)^n = 0.95^n$$
.

Donc
$$p(X \ge 1) = 1 - p(X = 0) = 1 - 0.95^n$$

On cherche la plus petite valeur de n telle que $1-0.95^n>0.5$, la calculatrice fournit n=14.