Interrogation écrite sur les probabilités

Une chaîne de fabrication produit des pièces mécaniques.

On estime que 5 % des pièces produites par cette chaîne sont défectueuses.

Un ingénieur a mis au point un test à appliquer aux pièces. Ce test a deux résultats possibles : « positif » ou bien « négatif ».

On applique ce test à une pièce choisie au hasard dans la production de la chaîne.

On considère les évènements suivants :

- D : « la pièce est défectueuse » ;
- T : « la pièce présente un test positif » ;
- \overline{D} et \overline{T} désignent respectivement les évènements contraires de D et T .

Compte tenu des caractéristiques du test, on sait que :

- La probabilité qu'une pièce présente un test positif sachant qu'elle est défectueuse est égale à 0,98.
- La probabilité qu'une pièce présente un test négatif sachant qu'elle n'est pas défectueuse est égale à 0,97.

Les parties I et II peuvent être traitées de façon indépendante.

Partie I (4,5 pts)

- 1. Traduire la situation à l'aide d'un arbre pondéré.
- **2. a.** Déterminer la probabilité qu'une pièce choisie au hasard dans la production de la chaîne soit défectueuse et présente un test positif.
- **b.** Démontrer que : p(T) = 0.077 5.
- **3.** On appelle valeur prédictive positive du test la probabilité qu'une pièce soit défectueuse sachant que le test est positif. Calculer la valeur prédictive positive de ce test arrondie au millième.

Partie II (4 pts)

On choisit un échantillon de 30 pièces dans la production de la chaîne, en assimilant ce choix à un tirage avec remise. On note X la variable aléatoire qui donne le nombre de pièces défectueuses dans cet échantillon. On rappelle que : p(D) = 0.05

- **1.** Justifier que *X* suit une loi binomiale et déterminer les paramètres de cette loi.
- 2. Calculer la probabilité que cet échantillon contienne au moins une pièce défectueuse.

On donnera un résultat arrondi au centième.

- **3.** Calculer $p(X \in]2; 10]$). On arrondira au centième.
- **4.** Calculer l'espérance de la variable aléatoire *X* et interpréter le résultat obtenu.

Partie III (1,5 pts)

On choisit maintenant un échantillon de n pièces dans la production de la chaîne, en assimilant ce choix à un tirage avec remise. On a toujours p(D) = 0.05.

Quelle est la plus petite valeur de n, telle que la probabilité que l'échantillon contienne au moins une pièce défectueuse est supérieure à 0,5?