Correction des exercices type Bac sur les probabilités conditionnelles

Exercice 1

1. On commence par les événements C, S et E car c'est ceux dont on connait la probabilité. Pour les événements H et \overline{H} , on ne connait que des probabilités conditionnelles, donc on les met en second.

2.
$$p(C \cap H) = p(C) \times p_C(H) = 0.3 \times 0.459 = 0.1377$$

3. D'après la formule des probabilités totales, C, S et E formant une partition de l'univers :

$$p(H) = p(C \cap H) + p(S \cap H) + p(E \cap H)$$

$$= p(C) \times p_C(H) + p(S) \times p_S(H) + p(E) \times p_E(H)$$

$$= 0.3 \times 0.459 + 0.5 \times 0.8 + 0.2 \times 0.25$$

$$= 0.137 7 + 0.4 + 0.05$$

$$= 0.587 7$$

4. Il s'agit de trouver $p_H(S)$, à ne pas confondre avec $p_S(H)$ qui lui était donné.

$$p_H(S) = \frac{p(S \cap H)}{p(H)} = \frac{0.4}{0.5877} \approx 0.681$$

Exercice 2

1. a. D'après l'énoncé, p(G) = 0.2.

C'est d'ailleurs une bonne idée d'écrire sur l'énoncé les noms des événements qui correspondent aux probabilités données.

b.
$$p(V) = 0.4$$
, donc $p(\bar{V}) = 0.6$.

$$p_V(G) = 0.08$$
, donc $p_V(\bar{G}) = 0.92$.

Enfin, p(G) = 0.2 ne peut pas être écrit dans l'arbre.

2.
$$p(V \cap G) = p(V) \times p_V(G) = 0.4 \times 0.08 = 0.032$$

3. C'est un peu plus difficile que d'habitude : on aimerait utiliser

$$p_{\overline{V}}(G) = \frac{p(\overline{V} \cap G)}{p(\overline{V})}$$

mais on ne connaît pas $p(\bar{V} \cap G)$. En revanche, la formule des probabilités totales donne :

$$p(G) = p(V \cap G) + p(\overline{V} \cap G)$$

$$\Leftrightarrow p(\overline{V} \cap G) = p(G) - p(V \cap G)$$

$$= 0.2 - 0.032$$

$$= 0.168$$

Ainsi,

$$p_{\bar{V}}(G) = \frac{p(\bar{V} \cap G)}{p(\bar{V})} = \frac{0.168}{0.6} = 0.28$$

Exercice 3

Pour ce genre d'exercice, il est recommandé de faire un arbre, même si ce n'est pas demandé dans l'énoncé.

1. a. On applique la formule des probabilités totales. D'ailleurs, $V = \overline{U}$.

$$p(E) = p(E \cap U) + p(E \cap V)$$

$$= p_U(E) \times p(U) + p_V(E) \times p(V)$$

$$= 0.3 \times 0.03 + 0.7 \times 0.05$$

$$= 0.009 + 0.035$$

$$= 0.044$$

b. On cherche

$$p_E(U) = \frac{p(E \cap U)}{p(E)} = \frac{0,009}{0,044} = \frac{9}{44}$$

(on ne demande pas de valeur approchée).

2. Dans cette question, on n'a plus p(U) = 0.3. On ne connaît plus p(E), du coup.

Soit x la probabilité p(U). Ainsi, p(V) est égal à 1-x.

On souhaiterait que $p_E(U)$ soit égal à 0,3. Or :

$$p_E(U) = \frac{p(E \cap U)}{p(E)} = \frac{x \times 0.03}{x \times 0.03 + (1 - x) \times 0.05} = \frac{0.03x}{-0.02x + 0.05}$$

Or $p_E(U)$ doit aussi être égal à $\frac{3}{10}$. On fait un produit en croix :

$$10 \times 0.03x = 3(-0.02x + 0.05) \Leftrightarrow 0.3x = -0.06x + 0.15 \Leftrightarrow 0.36x = 0.15 \Leftrightarrow x = \frac{0.15}{0.36} = \frac{5}{12}$$

Il faut donc que l'entreprise U fournisse $\frac{5}{12}$, et l'entreprise V fournit les $\frac{7}{12}$ restants.

Exercice 4

1. a. On a $p(A_2) = 0.9$ donc $p(\overline{A_2}) = 0.1$.

De même, $p_{A_2}(A_3) = 0.9$ et $p_{A_2}(\overline{A_3}) = 0.1$.

En revanche, $p_{\overline{A_2}}(\overline{A_3}) = 0.6$ et donc $p_{\overline{A_2}}(A_3) = 0.4$.

b. On applique la formule des probabilités totales.

$$p(A_3) = p(A_2 \cap A_3) + p(\overline{A_2} \cap A_3) = 0.9 \times 0.9 + 0.1 \times 0.4 = 0.81 + 0.04 = 0.85.$$

c.

$$p_{A_3}(A_2) = \frac{p(A_2 \cap A_3)}{p(A_3)} = \frac{0.81}{0.85} \approx 0.95$$

2. D'après l'énoncé, pour tout entier n supérieur à 1 :

$$p_{n+1} = p(A_{n+1})$$

$$= p(A_n \cap A_{n+1}) + p(\overline{A_n} \cap A_{n+1})$$

$$= p(A_n) \times p_{A_n}(A_{n+1}) + p(\overline{A_n}) \times p_{\overline{A_n}}(A_{n+1})$$

$$= p_n \times 0.9 + (1 - p_n) \times 0.4$$

$$= 0.5p_n + 0.4$$

- **3.** Ce sont des questions très classiques, je ne détaille pas la rédaction.
- **a.** On a $p_1 = 1 > 0.8$ et pour n supérieur à 1, $p_n > 0.8 \Leftrightarrow 0.5p_n + 0.4 > 0.5 \times 0.8 + 0.4 \Leftrightarrow p_{n+1} > 0.8$
- **b.** On peut le redémontrer par récurrence, ou bien en calculant $p_{n+1} p_n$ et en utilisant **3a.**
- **c.** Elle est convergente car elle est décroissante et minorée par 0,8.
- **4. a.** Pour n supérieur à 1, $v_{n+1} = p_{n+1} 0.8 = 0.5p_n + 0.4 0.8 = 0.5p_n 0.4 = 0.5(p_n 0.8) = 0.5v_n$ donc la suite (v_n) est géométrique de premier terme $v_1 = p_1 0.8 = 0.2$ et de raison 0.5.
- **b.** C'est la formule du terme général des suites géométriques, mais avec un petit twist : le premier terme de la suite est d'indice 1.

Ainsi, pour n supérieur à 1, $v_n = 0.2 \times 0.5^{n-1}$ et donc $p_n = 0.8 + v_n = 0.8 + 0.2 \times 0.5^{n-1}$

c. Comme -1 < 0.5 < 1, $\lim_{n \to \infty} 0.5^{n-1} = 0$

Par somme, la limite de (p_n) est 0,8.