Correction des exercices type bac sur les équations différentielles

Exercice 1

- **1. a.** D'après l'énoncé, les baguettes sortent du four à 225°C. On a donc f(0) = 225.
- **b.** L'équation $y' + 6y = 150 \Leftrightarrow y' = 6y + 150$ a pour solution générale les fonctions :

$$t \mapsto Ke^{-6t} - \frac{150}{-6} = Ke^{-6t} + 25$$

avec K réel.

c. $f(0) = 225 \Leftrightarrow Ke^{6\times 0} + 25 = 225 \Leftrightarrow K + 25 = 225 \Leftrightarrow K = 200.$

Ainsi, pour tout $t \ge 0$, $f(t) = 200e^{-6t} + 25$

2. Pour $t \ge 0$, $f'(t) = -6 \times 200e^{-6t} = -1200e^{-6t} < 0$, donc f est bien décroissante.

De plus, $\lim_{t\to +\infty} f(t) = \lim_{t\to +\infty} 200e^{-6t} + 25 = 25$ donc f tend bien vers la température ambiante.

3. f est continue, strictement décroissante sur $[0; +\infty[$,

et on a f(0) = 250 et $\lim_{t \to +\infty} f(t) = 25$, donc $f(0) > 40 > \lim_{t \to +\infty} f(t)$.

D'après le théorème de la bijection, l'équation f(t) = 40 admet une unique solution sur $[0; +\infty[$.

Exercice 2

- **A1.** La courbe C_2 coupe l'axe des abscisses là où la courbe C_1 change de sens de variation (l'inverse n'étant pas vrai). Donc g' correspond à C_2 et g correspond à C_1 .
- **A2.** La tangente a pour équation y = g'(0)(x 0) + g(0) = g'(0)x + g(0).

Or d'après la courbe C_1 , g(0) = 1, et d'après la courbe C_2 , g'(0) = 2.

Donc l'équation est bien y = 2x + 1.

B1. Pour $x \in \mathbb{R}$, $f_0'(x) = (2x+3)e^{-x} + (x^2+3x) \times (-e^{-x}) = (2x+3-x^2-3x)e^{-x} = (-x^2-x+3)e^{-x}$.

On calcule donc $f_0(x) + f_0'(x) = (x^2 + 3x)e^{-x} + (-x^2 - x + 3)e^{-x} = (2x + 3)e^{-x}$.

Ainsi, f_0 est bien une solution particulière de (E).

- **B2.** $y + y' = 0 \Leftrightarrow y' = -y$ et cette équation homogène (E_0) a pour solutions les fonctions de la forme $f(x) = Ke^{-x}$ avec $K \in \mathbb{R}$.
- **B3.** Ainsi, les solutions de (E) sont de la forme $f(x) = Ke^{-x} + (x^2 + 3x)e^{-x}$ avec $K \in \mathbb{R}$.
- **B4.** g est de la forme $g(x) = Ke^{-x} + (x^2 + 3x)e^{-x}$ avec $K \in \mathbb{R}$. Déterminons la valeur de K.
- g(0)=1 d'après la partie A, donc $Ke^{-0}+(0^2+3\times 0)e^{-0}=1 \Leftrightarrow K=1.$

Ainsi, $g(x) = 1e^{-x} + (x^2 + 3x)e^{-x} = (x^2 + 3x + 1)e^{-x}$

B5. Soit f une solution de (E). f est de la forme $f(x) = Ke^{-x} + (x^2 + 3x)e^{-x}$

soit $f(x) = (x^2 + 3x + K)e^{-x}$ avec $K \in \mathbb{R}$.

On a alors
$$f'(x) = (2x+3)e^{-x} + (x^2+3x+K) \times (-e^{-x}) = (-x^2-x+3-K)e^{-x}$$

Ainsi,
$$f''(x) = (-2x - 1)e^{-x} + (-x^2 - x + 3 - K) \times (-e^{-x}) = (x^2 - x - 4 + K)e^{-x}$$

Le signe de f''(x) ne dépend que du polynôme $(x^2 - x - 4 + K)$.

Il faut donc chercher les valeurs de K telles que le polynôme admet deux racines, c'est-à-dire que le discriminant soit strictement positif.

Soit
$$\Delta = (-1)^2 - 4 \times 1 \times (-4 + K) = 1 - 4(-4 + K) = 17 - 4K$$
 le discriminant.

$$\Delta > 0 \Longleftrightarrow 17 - 4K > 0 \Longleftrightarrow 4K < 17 \Longleftrightarrow K < 4,25$$

Ainsi, les solutions de l'équation différentielle (E) dont la courbe admet exactement deux points d'inflexion sont les fonctions de la forme $f(x) = Ke^{-x} + (x^2 + 3x)e^{-x}$ avec K < 4,25.

Exercice 3

A1. On a h'(t) = 0, et ainsi $h'(t) + 0.48h(t) = 0 + 0.48 \times \frac{1}{120} = \frac{0.48}{120} = \frac{48}{12000} = \frac{1}{250}$

Donc h est bien solution de (E_1) .

- **A2.** L'équation homogène se réécrit y'=-0.48y et les solutions sont de la forme $f(t)=Ke^{-0.48t}$ avec $K\in\mathbb{R}$.
- **A3.** Ainsi, les solutions de (E_1) sont de la forme $f(t) = Ke^{-0.48t} + \frac{1}{120}$ avec $K \in \mathbb{R}$.
- **B1.** Soit p une solution de l'équation (E_2) . On sait alors que $p=\frac{1}{y}$ et que $p'=\frac{1}{250}p\times(120-p)$.

Mais alors $y = \frac{1}{p}$ donc

$$y' = -\frac{p'}{p^2} = -\frac{\frac{1}{250}p \times (120 - p)}{p^2} = -\frac{0.48p - \frac{1}{250}p^2}{p^2} = -\frac{0.48p - \frac{1}{250}p^2}{p^2} = -\frac{0.48p + \frac{1}{250}p^2}{p^2} = -0.48\frac{1}{p} + \frac{1}{250} = -0.48y + \frac{1}{250}p^2 = -0.48y + \frac{1}{250}p^2 = -0.48p + \frac{1}{250}p^$$

soit $y' + 0.48y = \frac{1}{250}$. Ainsi, y est bien une solution de (E_1) .

B2. Soit y une solution de (E_1) . Alors $y(t) = Ke^{-0.48t} + \frac{1}{120}$ avec $K \in \mathbb{R}$. Ainsi :

$$p(t) = \frac{1}{y(t)} = \frac{1}{Ke^{-0.48t} + \frac{1}{120}} = \frac{120}{120\left(Ke^{-0.48t} + \frac{1}{120}\right)} = \frac{120}{1 + 120Ke^{-0.48t}}$$

Or si K est une constante réelle, 120K est également une constante réelle.

Donc $p(t) = \frac{120}{1 + Ke^{-0.48t}}$ avec K constante réelle.

В3.

$$p(0) = 30 \Leftrightarrow \frac{120}{1 + Ke^{-0.48 \times 0}} = 30 \Leftrightarrow \frac{120}{1 + K} = 30 \Leftrightarrow \frac{120}{30} = 1 + K \Leftrightarrow 4 = 1 + K \Leftrightarrow K = 3$$

B4. $\lim_{t\to+\infty}e^{-0.48t}=0$ donc par produit et somme, $\lim_{t\to+\infty}1+3e^{-0.48t}=1$ et par quotient, $\lim_{t\to+\infty}p(t)=120$.

La population de la bactérie se stabilisera vers 120 000.

B5. On résout l'inéquation $p(t) \ge 60$

$$\Leftrightarrow \frac{120}{1 + 3e^{-0.48t}} \ge 60 \Leftrightarrow 120 \ge 60(1 + 3e^{-0.48t}) \Leftrightarrow 2 \ge 1 + 3e^{-0.48t} \Leftrightarrow 1 \ge 3e^{-0.48t}$$

$$\Leftrightarrow \frac{1}{3} \ge e^{-0.48t} \Leftrightarrow \ln\left(\frac{1}{3}\right) \ge -0.48t \Leftrightarrow \frac{\ln(3)}{0.48} \ge t$$

ce dernier nombre étant approximativement égal à 2,289. Ainsi, le temps nécessaire pour que la population de bactéries dépasse 60 000 individus est de 2,289 heures soit 2 heures et 17 minutes.

Exercice 4 1. On a f(0) = 3.

Le coefficient directeur de la tangente en 0 semble être -2, donc f'(0) = -2.

- **2**. $f(0) = e^0 + a \times 0 + b \times e^{-0} = 1 + b$. Or f(0) = 3 donc b = 2.
- **3. a.** On dérive f comme une somme (attention, ne pas oublier que la dérivée de $x\mapsto e^{-x}$ est $x\mapsto -e^{-x}$)

Pour *x* réel, $f'(x) = e^x + a - be^{-x} = e^x + a - 2e^{-x}$

- **b.** $f'(0) = e^0 + a 2e^{-0} = a 1$.
- **c.** Or f'(0) = -2, donc a 1 = -2 et ainsi a = -1.
- **4.** (Notez que l'expression de la fonction g valide ce qu'on a trouvé à la question **3**)
- **a.** Pour x réel, on considère $g(x) = e^x x + 2e^{-x}$

Sa dérivée est $g'(x) = e^x - 1 - 2e^{-x}$

Et on a bien $g'(x) + g(x) = e^x - 1 - 2e^{-x} + e^x - x + 2e^{-x} = 2e^x - x - 1$

donc g est bien solution de (E).

- **b.** $y' + y = 0 \Leftrightarrow y' = -y$ donc les solutions sont les fonctions $x \mapsto Ke^{-x}$ où $K \in \mathbb{R}$.
- ${f c.}$ On connaît g, une solution particulière de (E), ainsi que les solutions de l'équation homogène associée.

Ainsi, les solutions de (E) sont les fonctions $x \mapsto Ke^{-x} + g(x)$,

c'est-à-dire $x \mapsto Ke^{-x} + e^x - x + 2e^{-x}$, soit $x \mapsto Ke^{-x} + e^x - x$ où $K \in \mathbb{R}$.