Interrogation écrite sur la fonction *ln*

Exercice 1 (4 pts) On considère f définie par :

$$f(x) = x^2 - 8\ln(2x + 6)$$

- **1.** Justifier que la fonction f est définie sur $]-3;+\infty[$.
- **2.** Déterminer $\lim_{x \to -3} f(x)$.
- **3.** Déterminer la fonction dérivée f' de la fonction f.
- **4.** Étudier les variations de f sur son ensemble de définition, puis dresser son tableau de variations.

On donnera la valeur exacte du minimum de f. On n'attend pas de calcul de limites.

Exercice 2 (6 pts)

On considère la fonction f, définie sur $]0; +\infty[$ par :

$$f(x) = 3x + 1 - 2x \ln(x)$$

- **1.** Déterminer la limite de la fonction f en 0 et en $+\infty$.
- **2.** a. Démontrer en détaillant soigneusement vos calculs que pour tout réel x > 0, $f'(x) = 1 2 \ln(x)$
 - **b.** Étudier le signe de f' et dresser le tableau de variations de la fonction f sur l'intervalle $]0; +\infty[$. On fera figurer dans ce tableau les limites, ainsi que la valeur exacte de l'extremum.
- **3.** a. Démontrer que l'équation f(x) = 0 admet une unique solution sur $]0; +\infty[$. On notera α cette solution.
 - **b.** En déduire le signe de la fonction f sur $]0; +\infty[$.

Interrogation écrite sur la fonction ln

Exercice 1 (4 pts) On considère f définie par :

$$f(x) = x^2 - 8\ln(2x + 6)$$

- **1.** Justifier que la fonction f est définie sur $]-3;+\infty[$.
- **2.** Déterminer $\lim_{x \to -3} f(x)$.
- **3.** Déterminer la fonction dérivée f' de la fonction f.
- **4.** Étudier les variations de f sur son ensemble de définition, puis dresser son tableau de variations.

On donnera la valeur exacte du minimum de f. On n'attend pas de calcul de limites.

Exercice 2 (6 pts)

On considère la fonction f, définie sur $]0; +\infty[$ par :

$$f(x) = 3x + 1 - 2x \ln(x)$$

- **1.** Déterminer la limite de la fonction f en 0 et en $+\infty$.
- **2.** a. Démontrer en détaillant soigneusement vos calculs que pour tout réel x > 0, $f'(x) = 1 2 \ln(x)$
 - **b.** Étudier le signe de f' et dresser le tableau de variations de la fonction f sur l'intervalle $]0; +\infty[$. On fera figurer dans ce tableau les limites, ainsi que la valeur exacte de l'extremum.
- **3.** a. Démontrer que l'équation f(x) = 0 admet une unique solution sur $]0; +\infty[$. On notera α cette solution.
 - **b.** En déduire le signe de la fonction f sur $]0; +\infty[$.