Correction des exercices faisant intervenir la fonction ln

Exercice 1

- 1. Il s'agit de vérifier que pour tout x réel, $x^2 + 2x + 3$ est strictement positif. Le discriminant de ce polynôme est $\Delta = 2^2 - 4 \times 1 \times 3 = -8$ Ce discriminant est négatif, donc le polynôme n'a pas de racines et le terme en x^2 étant positif, le polynôme $x^2 + 2x + 3$ est strictement positif pour tout x réel. Ainsi, f est bien définie sur \mathbb{R} .
- **2.** Tout d'abord, $\lim_{x\to -\infty} x = -\infty$. Ensuite, $\lim_{x\to -\infty} x^2 + 2x + 3$ est une forme indéterminée, mais $x^2 + 2x + 3 = x^2 \left(1 + \frac{2}{x} + \frac{3}{x^2}\right)$, et par produit, cette expression a pour limite $+\infty$ en $-\infty$. Or $\lim_{X\to +\infty} \ln(X) = +\infty$ donc par composition, $\lim_{X\to -\infty} \ln(x^2 + 2x + 3) = +\infty$. Enfin, par différence, $\lim_{x\to -\infty} f(x) = +\infty$.
- **3.** Pour *x* réel :

$$f'(x) = 1 - \frac{2x+2}{x^2+2x+3} = \frac{(x^2+2x+3) - (2x+2)}{x^2+2x+3} = \frac{x^2+1}{x^2+2x+3}$$

- **4.** Le dénominateur de f'(x) est strictement positif pour tout x réel comme montré en question **1**, et $x^2 + 1$ est positif pour tout x réel. Ainsi, f'(x) est positif sur tout \mathbb{R} et f est croissante sur \mathbb{R} .
- 5. Ce n'est pas le TVI ici, qui ne sert qu'à résoudre des équations de la forme f(x) = k où k est constant. $f(x) = x \Leftrightarrow x \ln(x^2 + 2x + 3) = x \Leftrightarrow \ln(x^2 + 2x + 3) = 0 \Leftrightarrow x^2 + 2x + 3 = 1 \Leftrightarrow x^2 + 2x + 2 = 0$ Or le polynôme $x^2 + 2x + 2$ a pour discriminant $\Delta = 2^2 4 \times 1 \times 2 = -4$ et donc pas de racine. Donc l'équation f(x) = x n'admet aucune solution.

Partie A

1. a. Pour tout réel x,

$$f'(x) = 1 - \frac{2x}{x^2 + 1} = \frac{x^2 + 1}{x^2 + 1} - \frac{2x}{x^2 + 1} = \frac{x^2 - 2x + 1}{x^2 + 1} = \frac{(x - 1)^2}{x^2 + 1}$$

b. Le numérateur est un carré, qui s'annule pour x = 1 et qui est positif pour tout x. Le dénominateur est strictement positif pour tout x. Ainsi, f'(x) est positif pour tout x et f est croissante sur \mathbb{R} .

2. Le $2 \ln(x)$ peut nous inciter à factoriser par x^2 .

$$f(x) = x - \ln(x^2 + 1)$$

$$= x - \ln\left(x^2\left(1 + \frac{1}{x^2}\right)\right)$$

$$= x - \left(\ln(x^2) + \ln\left(1 + \frac{1}{x^2}\right)\right)$$

$$= x - 2\ln(x) - \ln\left(1 + \frac{1}{x^2}\right)$$

3. Par somme, on a une forme indéterminée. Mais :

$$f(x) = x \left(1 - \frac{2\ln(x)}{x}\right) - \ln\left(1 + \frac{1}{x^2}\right)$$

Or $\lim_{x \to +\infty} \frac{2 \ln(x)}{x} = 0$ par croissances comparées, donc $\lim_{x \to +\infty} 1 - \frac{2 \ln(x)}{x} = 1$,

puis par produit,
$$\lim_{x \to +\infty} x \left(1 - \frac{2\ln(x)}{x}\right) = +\infty$$
.

De plus, $\lim_{x \to +\infty} 1 + \frac{1}{x^2} = 1$ donc par composition, $\lim_{x \to +\infty} \ln \left(1 + \frac{1}{x^2} \right) = 0$.

Ainsi par somme, $\lim_{x \to +\infty} f(x) = +\infty$.

Partie B

1. <u>Initialisation</u>: On a bien $u_0 = 7$, $u_1 = f(u_0) = f(7) = 7 - \ln(50) \approx 3,09$ et ainsi $u_0 \ge u_1 \ge 0$.

<u>Hérédité</u> : Soit $n \in \mathbb{N}$, supposons que $u_n \ge u_{n+1} \ge 0$.

Alors en appliquant f qui est croissante sur \mathbb{R} , $f(u_n) \ge f(u_{n+1}) \ge f(0)$.

Or
$$f(0) = 0 - \ln(0^2 + 1) = 0$$
.

Ainsi, $u_{n+1} \ge u_{n+2} \ge 0$.

<u>Conclusion</u>: Pour tout entier naturel n, on a $u_n \ge u_{n+1} \ge 0$.

2. La suite (u_n) est décroissante et minorée par 0, donc elle converge vers une limite ℓ .

3. La fonction
$$f$$
 étant continue, d'après le théorème du point fixe, il suffit de résoudre l'équation :
$$f(\ell) = \ell \Leftrightarrow \ell - \ln(\ell^2 + 1) = \ell \Leftrightarrow \ln(\ell^2 + 1) = 0 \Leftrightarrow \ell^2 + 1 = 1 \Leftrightarrow \ell^2 = 0 \Leftrightarrow \ell = 0$$

4. En Python, la fonction ln se note « log », mais cet oubli n'était pas pénalisé au bac.

$$n = 0$$

$$u = 7$$

while u > h :

$$n = n + 1$$

$$u = u - \log(u \cdot u + 1)$$

return n

En obtenant le tableau de valeurs à la calculatrice, on trouve que la plus petite valeur de l'entier n à partir de laquelle $u_n \le 0.01$ est n = 97.

Partie A

- **1.** f'(1) = 3, et (T) : y = 3x 4
- 2. f semble concave sur]0;1] puis convexe sur $[1;+\infty[$. Le point A semble être un point d'inflexion, car la courbe traverse la tangente en ce point.

Partie B

- **1.** $\lim_{x \to +\infty} x = +\infty$, $\lim_{x \to +\infty} x^2 = +\infty$ donc $\lim_{x \to +\infty} \ln(x^2) = +\infty$ par composition, et $\lim_{x \to +\infty} -\frac{1}{x} = 0$. Ainsi, $\lim_{x \to +\infty} f(x) = +\infty$.
 - pour tout x > 0, on a $f(x) = \frac{x^2 \ln(x^2) x}{x^2}$

Or $\lim_{x\to 0} x^2 \ln(x^2) = 0^-$ par croissances comparées, $\lim_{x\to 0} -x = 0^-$

donc $\lim_{x \to +\infty} f(x) = -\infty$ par quotient.

2. Pour x > 0,

$$f'(x) = \ln(x^2) + x \times \frac{2x}{x^2} + \frac{1}{x^2} = \ln(x^2) + \frac{1}{x^2} + 2$$

et

$$f''(x) = \frac{2x}{x^2} - \frac{2}{x^3} = \frac{2x^2 - 2}{x^3} = \frac{2(x^2 - 1)}{3} = \frac{2(x + 1)(x - 1)}{x^3}$$

3. a. Le signe de f''(x) ne dépend que de

 $(x^2-1)=(x-1)(x+1)$ qui est négatif sur]0;1[puis positif sur $[1;+\infty[$.

f est concave sur [0; 1] puis convexe sur $[1; +\infty[$.

b. f' est donc décroissante sur]0;1[puis croissante sur $[1;+\infty[$, son minimum est donc :

$$f'(1) = \ln(1^2) + \frac{1}{1^2} + 2 = 3$$

Ainsi, f'(x) est positif pour tout x > 0 et f est croissante.

- **4. a.** f est continue, strictement croissante sur $]0; +\infty[$. Sa limite en 0 est $-\infty$ et sa limite en $+\infty$ est $+\infty$. D'après le corollaire du théorème des valeurs intermédiaires, f(x) = 0 admet une unique solution.
 - **b.** On trouve $\alpha \approx 1.33$ et

$$f(\alpha) = 0 \Leftrightarrow \alpha \ln(\alpha^2) = \frac{1}{\alpha} \Leftrightarrow \ln(\alpha^2) = \frac{1}{\alpha^2} \Leftrightarrow \alpha^2 = \exp\left(\frac{1}{\alpha^2}\right)$$

Partie A

- **1. a.** $\lim_{x \to 0} x 2 = -2$ et $\lim_{x \to 0} \frac{1}{2} \ln(x) = -\infty$ donc par somme, $\lim_{x \to 0} f(x) = -\infty$
 - $\lim_{x \to +\infty} x 2 = +\infty$ et $\lim_{x \to +\infty} \frac{1}{2} \ln(x) = +\infty$ donc par somme, $\lim_{x \to +\infty} f(x) = +\infty$
 - **b.** Pour tout x > 0:

$$f'(x) = 1 + \frac{1}{2} \times \frac{1}{x} = 1 + \frac{1}{2x} = \frac{2x+1}{2x}$$

c. Pour tout x > 0, (2x + 1) et 2x sont strictement positifs, donc f'(x) est positif sur $]0; +\infty[$ et f est croissante sur cet intervalle.

2. a. f est continue et strictement croissante sur $]0; +\infty[$.

De plus,
$$\lim_{x\to 0} f(x) = -\infty$$
 et $\lim_{x\to +\infty} f(x) = +\infty$, et $0 \in]-\infty; +\infty[$.

D'après le corollaire du TVI, l'équation f(x) = 0 admet une solution unique dans $]0; +\infty[$.

De plus,
$$f(1) = 1 - 2 + \frac{1}{2}\ln(1) = -1 < 0$$
 et $f(2) = 2 - 2 + \frac{1}{2}\ln(2) = \frac{1}{2}\ln(2) > 0$.

f(1) étant négatif et f(2) positif, donc α appartient à l'intervalle [1; 2].

b. f est croissante et ne s'annule qu'en α , donc f est négative sur $]0; \alpha]$ puis positive sur $[\alpha; +\infty[$.

c.
$$f(\alpha) = 0 \Leftrightarrow \alpha - 2 + \frac{1}{2}\ln(\alpha) = 0 \Leftrightarrow \frac{1}{2}\ln(\alpha) = 2 - \alpha \Leftrightarrow \ln(\alpha) = 2(2 - \alpha)$$
.

Partie B

1. On fait bien attention au produit $-\frac{1}{4}x^2ln(x)$!

Pour $x \in]0; 1]$:

$$g'(x) = -\frac{7}{8} \times 2x + 1 - \left(\frac{1}{4} \times 2x \ln(x) + \frac{1}{4}x^2 \times \frac{1}{x}\right)$$

$$g'(x) = -\frac{7}{4}x + 1 - \frac{1}{2}x \ln(x) - \frac{1}{4}x$$

$$g'(x) = -2x + 1 - \frac{1}{2}x \ln(x)$$

Or:

$$xf\left(\frac{1}{x}\right) = x\left(\frac{1}{x} - 2 + \frac{1}{2}\ln\left(\frac{1}{x}\right)\right) = 1 - 2x + \frac{1}{2}x\ln\left(\frac{1}{x}\right) = -2x + 1 - \frac{1}{2}x\ln(x) = g'(x)$$

- **2. a.** Pour x appartenant à l'intervalle $]0; \frac{1}{\alpha}[$, alors $x < \frac{1}{\alpha}$, donc en appliquant la fonction inverse qui est décroissante, $\frac{1}{x} > \alpha$. Or sur $[\alpha; +\infty[$, f est positive, donc $f\left(\frac{1}{x}\right) > 0$.
 - **b.** Pour tout $x \in]0;1]$, x est strictement positif, donc le signe de g'(x) ne dépend que de $f\left(\frac{1}{x}\right)$.

Or d'après la question précédente, pour x appartenant à l'intervalle $]0; \frac{1}{\alpha}[, f(\frac{1}{x})]$ est positif.

De même, pour x appartenant à l'intervalle $\frac{1}{\alpha}$; $+\infty$ [, $f\left(\frac{1}{x}\right)$ est négatif.

Ainsi, g'(x) est positif sur $]0; \frac{1}{\alpha}[$ puis négatif sur $]\frac{1}{\alpha}; +\infty[$.

Donc g est croissante sur $]0; \frac{1}{\alpha}[$ puis décroissante sur $]\frac{1}{\alpha}; +\infty[$.

Partie A

- 3. Il semblerait que 1 soit solution de cette équation.
- **4.** La tangente à C_g semble horizontale en 0,5, donc une solution pourrait être 0,5.

Partie B

- 1. On a $\lim_{x \to +\infty} -\frac{1}{x} = 0$ et $\lim_{x \to 0} e^x = 1$ donc par composition, $\lim_{x \to +\infty} e^{-\frac{1}{x}} = 1$. De plus, $\lim_{x \to +\infty} \frac{1}{x^2} = 0$ donc $\lim_{x \to +\infty} g(x) = 0$.
- **2.** a. Pour tout x > 0:

$$h(x)$$

$$= \ln(g(x))$$

$$= \ln\left(\frac{1}{x^2} \times e^{-\frac{1}{x}}\right)$$

$$= \ln\left(\frac{1}{x^2}\right) + \ln\left(e^{-\frac{1}{x}}\right)$$

$$= -\ln(x^2) - \frac{1}{x}$$

$$= -2\ln x - \frac{1}{x}$$

$$= -\frac{2x\ln x}{x} - \frac{1}{x}$$

$$= \frac{-1 - 2x\ln x}{x}$$

b. Par croissances comparées, $\lim_{x\to 0} x \ln x = 0$ donc $\lim_{x\to 0} -1 - 2x \ln x = -1$.

Ainsi, par quotient, $\lim_{x\to 0} h(x) = -\infty$.

c. h(x) = ln(g(x)) signifie que $g(x) = e^{h(x)}$. Ainsi :

 $\lim_{x\to 0} g(x) = \lim_{x\to 0} e^{h(x)} = \lim_{x\to -\infty} e^x = 0 \text{ par composition}.$

3. g est un produit de la fonction carré inverse et d'une composée. Pour tout x > 0:

$$g'(x) = -\frac{2}{x^3} \times e^{-\frac{1}{x}} + \frac{1}{x^2} \times \frac{1}{x^2} \times e^{-\frac{1}{x}}$$

$$g'(x) = e^{-\frac{1}{x}} \left(-\frac{2}{x^3} + \frac{1}{x^4} \right)$$

$$g'(x) = e^{-\frac{1}{x}} \left(-\frac{2x}{x^4} + \frac{1}{x^4} \right)$$

$$g'(x) = e^{-\frac{1}{x}} \left(\frac{1 - 2x}{x^4} \right)$$

4. x^4 est positif pour tout x réel, $e^{-\frac{1}{x}}$ aussi. Le signe de g' ne dépend donc que de celui de 1-2x.

Ainsi, g' est positif sur $\left[0; \frac{1}{2}\right]$ et négatif sur $\left[\frac{1}{2}; +\infty\right[$

et g est croissante sur $[0; \frac{1}{2}]$ et décroissante sur $[\frac{1}{2}; +\infty[$,

ce qui valide la conjecture de la partie A.

Partie A

- **5.** On lit l'image f(-1) = -2, et le coefficient directeur de la tangente est f'(-1) = 1.
- **6.** La tangente justement, n'est pas en-dessous de la courbe sur tout $]-2;+\infty[$, donc f n'est pas convexe sur tout son ensemble de définition.
- 7. Il semblerait qu'il n'y ait qu'une seule solution de cette équation, approximativement 0,1.

Partie B

1. $\lim_{x \to -2} f(x) = x^2 + 2x - 1 = -1$.

De plus, $\lim_{x\to -2} x + 2 = 0$ donc par composition, $\lim_{x\to -2} \ln(x+2) = -\infty$.

Ainsi, par somme, $\lim_{x \to -2} f(x) = -\infty$.

Cela signifie que la droite verticale d'équation x = -2 est asymptote à C_f .

2. Pour tout x > -2:

$$f'(x) = 2x + 2 + \frac{1}{x+2} = \frac{(2x+2)(x+2) + 1}{x+2} = \frac{2x^2 + 4x + 2x + 4 + 1}{x+2} = \frac{2x^2 + 6x + 5}{x+2}$$

3. Le dénominateur est strictement positif pour tout x > -2.

On calcule le discriminant du polynôme au numérateur : $\Delta = 6^2 - 4 \times 2 \times 5 = -4$. Ce polynôme n'a pas de racines, il est positif pour tout x.

Ainsi f est croissante sur $]-2;+\infty[$.

- **4.** On applique le corollaire du TVI. $\alpha \approx 0.12$.
- **5.** f étant croissante, f(x) est négatif sur $]-2;\alpha]$ puis positif sur $[\alpha;+\infty[$.
- **6.** Oh non. Pour tout x > -2:

$$f''(x) = \frac{(4x+6)(x+2) - (2x^2 + 6x + 5) \times 1}{(x+2)^2} = \frac{4x^2 + 8x + 6x + 12 - 2x^2 - 6x - 5}{(x+2)^2} = \frac{2x^2 + 8x + 7}{(x+2)^2}$$

On calcule le discriminant du polynôme au numérateur : $\Delta=8^2-4\times2\times7=8$

Les racines sont $\frac{-8-\sqrt{8}}{4}$, qui est hors de l'ensemble de définition, et $\frac{-8+\sqrt{8}}{4}=-2+\frac{\sqrt{2}}{2}$

Ce dernier nombre annule la dérivée seconde de f: c'est l'abscisse de son unique point d'inflexion.

Partie C

1. On utilise la formule de la distance entre deux points, sans la racine car $h(x) = JM^2$.

$$h(x) = JM^2 = (x - 0)^2 + (g(x) - 1)^2 = x^2 + (\ln(x + 2) - 1)^2$$

2. a. Le signe de f a été trouvé en question B5 et x+2 est positif pour x>-2.

Donc h est décroissante sur $]-2;\alpha]$ puis croissante sur $[\alpha;+\infty[$.

- **b.** Ainsi, le minimum de la fonction h est atteint en α : c'est la valeur de x qui minimise JM.
- **3.** a. Que sait-on sur α , déjà ? Ah oui : on sait que $f(\alpha) = 0$.

C'est-à-dire que $\alpha^2 + 2\alpha - 1 + \ln(\alpha + 2) = 0$, soit $\ln(\alpha + 2) = 1 - 2\alpha - \alpha^2$.

b. • La tangente à C_g au point M_α d'abscisse α a pour coefficient directeur $g'(\alpha)$.

Or $g'(x) = \frac{1}{x+2}$, donc le coefficient directeur de la tangente est $g'(\alpha) = \frac{1}{\alpha+2}$

• La droite (JM_{α}) passe par J(0;1) et par $M_{\alpha}(\alpha;g(\alpha))$. Son coefficient directeur est :

$$\frac{g(\alpha)-1}{\alpha-0} = \frac{\ln(\alpha+2)-1}{\alpha} = \frac{1-2\alpha-\alpha^2-1}{\alpha} = \frac{-\alpha(\alpha+2)}{\alpha} = -(\alpha+2)$$

• On calcule finalement le produit des deux coefficients directeurs : $-(\alpha + 2) \times \frac{1}{\alpha + 2} = -1$

ce qui prouve le résultat demandé.

1. La hauteur est l'ordonnée de M, mais la largeur est 2x. Pour qu'elles soient égales, il faut que

$$2x = \frac{1}{2}(e^x + e^{-x} - 2)$$

$$\Leftrightarrow 4x = e^x + e^{-x} - 2$$

$$\Leftrightarrow e^x + e^{-x} + 4x - 2 = 0$$

On trouve bien l'équation (E). La largeur ne peut être que strictement positive, donc il faut étudier ses solutions strictement positives.

2. a.

$$f(x) = e^x + e^{-x} + 4x - 2 = x \times \frac{e^x}{x} - x \times 4 + e^{-x} - 2 = x \left(\frac{e^x}{x} - 4\right) + e^{-x} - 2$$

b. Par croissances comparées, $\lim_{x\to +\infty}\frac{e^x}{x}=+\infty$, donc $\lim_{x\to +\infty}x\left(\frac{e^x}{x}-4\right)=+\infty$.

De plus, $\lim_{x \to +\infty} e^{-x} = 0$. Ainsi, par somme, $\lim_{x \to +\infty} f(x) = +\infty$.

3. a. On revient à l'expression initiale de f.

$$f'(x) = e^x - e^{-x} - 4$$

b. $f'(x) = 0 \iff e^x - e^{-x} - 4 = 0$.

On multiplie tout par e^x :

$$e^{x} - e^{-x} - 4 = 0$$

$$\Leftrightarrow e^{x}(e^{x} - e^{-x} - 4) = 0$$

$$\Leftrightarrow (e^{x})^{2} - e^{x} \times e^{-x} - 4 \times e^{x} = 0$$

$$\Leftrightarrow (e^{x})^{2} - 4e^{x} - 1 = 0$$

c. Si on pose $X = e^x$, l'équation devient $X^2 - 4X - 1 = 0$ et c'est une équation du second degré.

Son discriminant est $(-4)^2 - 4 \times 1 \times (-1) = 20$ et ses deux racines réelles sont :

$$X_1 = \frac{4 + \sqrt{20}}{2} = \frac{4 + 2\sqrt{5}}{2} = 2 + \sqrt{5}$$
 et $X_2 = 2 - \sqrt{5}$

mais X_2 est négatif, il ne reste que X_1 .

Cependant, on avait posé $X=e^x$, donc la solution vérifie $e^x=2+\sqrt{5} \Leftrightarrow x=\ln(2+\sqrt{5})$.

4. (Le tableau de signes est donné directement. Pour le trouver, il aurait fallu dériver f' et montrer qu'elle est toujours croissante, mais le rédacteur a préféré faire travailler d'autres choses)

a. f est donc décroissante sur $[0; \ln(2+\sqrt{5})]$ et croissante sur $[\ln(2+\sqrt{5}); +\infty[$.

On a
$$f(0) = e^0 + e^{-0} - 4 \times 0 - 2 = 0$$
,

et $f(\ln(2+\sqrt{5}))$ n'a aucune chance de pouvoir s'exprimer simplement, mais est égal à environ -3,3, c'est ce qu'on peut écrire dans le tableau. On pense aussi à écrire la limite en $+\infty$.

b. L'équation f(x) = 0 admet déjà 0 pour solution.

Sur l'intervalle]0; $\ln(2 + \sqrt{5})]$, elle n'admet pas de solution.

Ensuite, f est continue et strictement croissante sur l'intervalle $[\ln(2+\sqrt{5}); +\infty[$.

et $f(\ln(2+\sqrt{5})) < 0 < \lim_{x \to +\infty} f(x)$. D'après le théorème de la bijection, l'équation f(x) = 0 admet une unique solution α , qui est strictement positive et même supérieure à $\ln(2+\sqrt{5})$.