Propriétés algébriques

Exercice 1 Exprimer les nombres suivants en fonction de ln 5.

a.
$$\ln 25 + \ln \sqrt{125}$$

c.
$$\ln\left(\frac{e^4}{25}\right)$$

d.
$$e^{-\ln 5} - \ln(5e)$$

Exercice 2 a. Exprimer sous la forme $\ln a$, avec a un réel strictement positif, le nombre $3 \ln 2 - \ln 9 + \ln 5$.

b. Exprimer en fonction de $\ln 2$ le nombre $\ln 8 - 3 \ln 4 + \ln \sqrt{2}$.

Exercice 3 Simplifier au maximum les expressions suivantes.

a.
$$e^{2 \ln 3 + \ln 4}$$

b.
$$e^{3 \ln 2 - \ln 4}$$

c.
$$\frac{e^{\ln 6+1}}{e^{\ln 9+2}}$$

c.
$$\frac{e^{\ln 6+1}}{e^{\ln 9+2}}$$
 d. $\frac{e^{2 \ln 5 + \ln 3}}{e^{2 \ln 3}}$

Résolution d'équations d'inconnue entière en exposant

Exercice 4 Résoudre dans \mathbb{N} les équations suivantes : **a.** $2^{n-6} > 1 \ 000$

b.
$$1 - 0.6^n \ge 0.999$$

Exercice 5 Yzia possède 1 000 € sur un compte en banque.

Chaque mois, elle prélève 5% de la somme qui lui reste.

Au bout de combien de mois lui restera-t-il moins de 500 € sur son compte ?

Exercice 6 (u_n) est la suite géométrique de premier terme $u_0=2$ et de raison $q=\frac{3}{2}$

À partir de quel rang n les termes de la suite sont-ils supérieurs à un million ?

Résolution d'équations d'inconnue réelle

Exercice 7 Résoudre les équations suivantes : **a.** $\ln(x^2 - 1) \le \ln(3)$ **b.** $\ln(2x - 1) = 2 \ln x$

$$a. \ln(x^2 - 1) \le \ln(3)$$

$$\mathbf{b}.\ln(2x-1)=2\ln x$$

Exercice 8 On note (E) l'équation $\ln x + \ln(x - 10) = \ln 3 + \ln 7$ d'inconnue x.

Parmi les quatre propositions suivantes, une seule est vraie. Laquelle?

a. 3 est solution de (E).

b. $5 - \sqrt{46}$ est solution de (E).

c. L'équation (E) admet une unique solution réelle.

d. L'équation (E) admet deux solutions réelles.

Manipuler des expressions

Exercice 9 Démontrer que pour tout nombre réel x, on a $\ln(e^x + 1) = x + \ln(1 + e^{-x})$.

Exercice 10 Montrer que pour tout $x \in]1; +\infty[$:

$$\ln(x^2 - 1) - \ln(x^2 + 2x + 1) = \ln\left(\frac{x - 1}{x + 1}\right)$$

Exercice 11 Pour tout $x \in]1; +\infty[$, on définit la fonction ch « cosinus hyperbolique », par :

$$ch(x) = \frac{e^x + e^{-x}}{2}$$

Montrer que pour $x \in]1; +\infty[$ on a $ch(\ln(x+\sqrt{x^2-1}))=x$.

La fonction ch et (comme on le démontre ici) sa réciproque la fonction argch définie, pour tout x > 1, par $argch(x) = ln(x + \sqrt{x^2 - 1})$, sont deux fonctions de référence étudiées dans le supérieur.