Exercices faisant intervenir la fonction ln

Exercice 1

On considère la fonction f définie par $f(x) = x - \ln(x^2 + 2x + 3)$.

- **1.** Justifier que f est bien définie sur \mathbb{R} .
- **2.** Déterminer la limite de f(x) en $-\infty$. On admettra pour la suite que $\lim_{x\to +\infty} f(x) = +\infty$.
- **3.** Démontrer que pour tout *x* réel :

$$f'(x) = \frac{x^2 + 1}{x^2 + 2x + 3}$$

- **4.** En déduire les variations de f.
- **5.** Démontrer que l'équation f(x) = x n'admet aucune solution.

Exercice 2

Partie A: étude d'une fonction

On considère la fonction f définie sur $\mathbb R$ par

$$f(x) = x - \ln(x^2 + 1)$$

1. a. Montrer que pour tout réel x, on a :

$$f'(x) = \frac{(x-1)^2}{x^2 + 1}$$

- **b.** En déduire le sens de variation de la fonction f sur \mathbb{R} .
- **2.** Montrer que pour tout nombre réel x > 0, on a :

$$f(x) = x - 2\ln(x) - \ln\left(1 + \frac{1}{x^2}\right)$$

3. En déduire la limite de la fonction f en $+\infty$.

Partie B : étude d'une suite

On considère la suite (u_n) définie par $\begin{cases} u_0 = 7 \\ u_{n+1} = f(u_n) \end{cases}$

- **1.** Montrer, en utilisant un raisonnement par récurrence, que pour tout entier naturel n, on a $u_n \ge u_{n+1} \ge 0$.
- **2.** En déduire la convergence de la suite (u_n) .
- **3.** On note ℓ la limite de la suite (u_n) . Déterminer la valeur de ℓ .
- **4. a.** Recopier et compléter le script ci-contre afin qu'il renvoie la plus petite valeur de l'entier n à partir de laquelle $u_n \le h$, où h est un nombre réel strictement positif.
- **b.** Déterminer la valeur renvoyée lorsqu'on saisit seuil (0.01) dans la console Python. Justifier la réponse.

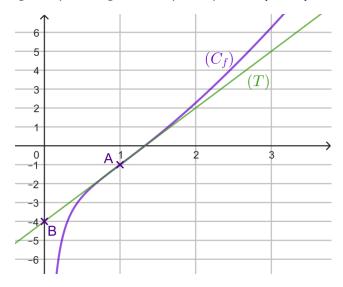
```
def seuil(h) :
n = 0
u = 7
while ... :
    n = n + 1
    u = ...
return n
```

Le but de cet exercice est d'étudier la fonction f définie sur $]0; +\infty[$ par :

$$f(x) = x \ln(x^2) - \frac{1}{x}$$

Partie A: lectures graphiques

On a tracé ci-dessous (C_f) , la courbe représentative de la fonction f, ainsi que (T), la tangente à (C_f) au point A de coordonnées (1; -1). Cette tangente passe également par le point B(0; -4).



- **1.** Lire graphiquement f'(1), et donner l'équation réduite de la tangente (T).
- **2.** Donner les intervalles sur lesquels la fonction f semble convexe ou concave. Que semble représenter le point A pour la courbe (C_f) ?

Partie B

- **1.** Déterminer, en justifiant soigneusement, la limite de f en $+\infty$, puis sa limite en 0.
- **2.** On admet que la fonction f est deux fois dérivable sur $]0; +\infty[$.

Déterminer f'(x) pour $x \in]0$; $+\infty[$.

Puis, montrer que pour tout $x \in]0$; $+\infty[$:

$$f''(x) = \frac{2(x+1)(x-1)}{x^3}$$

- **3.** a. Étudier la convexité de la fonction f.
 - **b.** Étudier les variations de f', puis le signe de f'(x) pour $x \in]0; +\infty[$. En déduire le sens de variation de f.
- **4.** a. Montrer que l'équation f(x) = 0 admet une unique solution α sur $]0; +\infty[$.
 - **b.** Donner une valeur approchée de α à 10^{-2} près, et montrer que α vérifie :

$$\alpha^2 = \exp\left(\frac{1}{\alpha^2}\right)$$

Partie A: étude d'une fonction auxiliaire

On se propose d'étudier la fonction f définie pour x > 0 par :

$$f(x) = x - 2 + \frac{1}{2}\ln(x)$$

- **1. a.** Déterminer, en justifiant, les limites de f en 0 et en $+\infty$.
- **b.** Montrer que pour tout x strictement positif, on a $f'(x) = \frac{2x+1}{2x}$
- **c.** Étudier le sens de variation de f sur $]0; +\infty[$.
- **d.** Étudier la convexité de f sur $]0; +\infty[$.
- **2. a.** Montrer que l'équation f(x) = 0 admet dans $]0; +\infty[$ une solution unique que l'on notera α et justifier que α appartient à l'intervalle [1; 2].
- **b.** Déterminer le signe de f(x) pour $x \in]0; +\infty[$.
- **c.** Montrer que $ln(\alpha) = 2(2 \alpha)$.

Partie B : étude de la fonction g

On définit la fonction g sur [0; 1] par :

$$g(x) = -\frac{7}{8}x^2 + x - \frac{1}{4}x^2ln(x)$$

- **1.** Calculer g'(x) pour $x \in]0;1]$ puis vérifier que $g'(x) = xf\left(\frac{1}{x}\right)$.
- **2. a.** Justifier que pour x appartenant à l'intervalle $]0; \frac{1}{\alpha}[$, on a $f(\frac{1}{x}) > 0$.
- **b.** En déduire les variations de g sur l'intervalle]0;1]. Les images et les limites ne sont pas demandées.

Exercice 5

Soient f et g les fonctions définies sur $]0; +\infty[$ par

$$f(x) = e^{-x}$$
 $g(x) = \frac{1}{x^2}e^{-\frac{1}{x}}$

On a représenté les courbes C_f et C_g ci-contre.

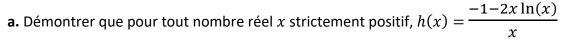
Partie A: conjecture graphiques

- **1.** Conjecturer une solution de l'équation f(x) = g(x)
- **2.** Conjecturer une solution de l'équation g'(x) = 0.

Partie B : étude de la fonction g

- **1.** Calculer la limite de g(x) quand x tend vers $+\infty$.
- **2.** On admet que la fonction g est strictement positive sur $]0; +\infty[$.

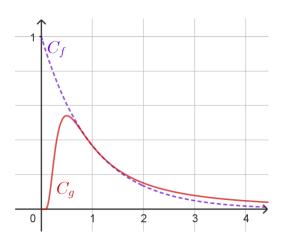
Soit h la fonction définie sur $]0; +\infty[$ par $h(x) = \ln(g(x)).$



- **b.** Calculer la limite de h(x) quand x tend vers 0.
- **c.** En déduire la limite de g(x) quand x tend vers 0.
- **3.** Démontrer que, pour tout nombre réel x strictement positif :

$$g'(x) = \frac{e^{-\frac{1}{x}}(1-2x)}{x^4}$$

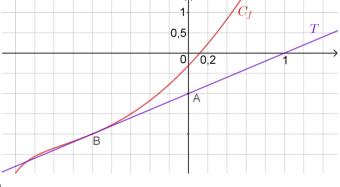
4. En déduire les variations de la fonction g sur $]0; +\infty[$.



On considère une fonction f définie et deux fois dérivable sur $]-2;+\infty[$.

On note \mathcal{C}_f sa courbe représentative, et on a tracé ci-contre la courbe \mathcal{C}_f et la tangente T au point B d'abscisse -1.

On précise que la droite T passe par le point A(0; -1).



Partie A: exploitation du graphique

On répondra aux questions de cette partie à l'aide du graphique.

- **1.** Préciser f(-1) et f'(-1).
- **2.** La fonction f est-elle convexe sur son ensemble de définition ? Justifier.
- **3.** Conjecturer le nombre de solutions de l'équation f(x) = 0 et donner une valeur arrondie à 10^{-1} près d'une solution.

Partie B : étude de la fonction f

On considère que la fonction f est définie sur]-2; $+\infty[$ par $f(x)=x^2+2x-1+\ln(x+2)$.

1. Déterminer par le calcul la limite de la fonction f en -2.

Interpréter graphiquement ce résultat. On admettra pour la suite que $\lim_{x \to +\infty} f(x) = +\infty$.

2. Montrer que pour tout x > -2:

$$f'(x) = \frac{2x^2 + 6x + 5}{x + 2}$$

- **3.** Dresser le tableau de variations complet de la fonction f sur $]-2;+\infty[$.
- **4.** Montrer que l'équation f(x) = 0 admet une unique solution α sur]-2; $+\infty[$ et donner une valeur arrondie de α à 10^{-2} près.
- **5.** En déduire le signe de f(x) sur]-2; $+\infty[$.
- **6.** Montrer que C_f admet un unique point d'inflexion et déterminer son abscisse.

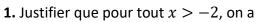
Partie C: une distance minimale

Soit g la fonction définie sur $]-2;+\infty[$ par $g(x)=\ln(x+2).$

On note C_g sa courbe représentative, représentée ci-contre.

Soit M un point de C_g d'abscisse x.

Le but de cette partie est de déterminer pour quelle valeur de x la distance JM est minimale, où J est le point de coordonnées (0;1) On considère la fonction h définie sur $]-2;+\infty[$ par $h(x)=JM^2.$



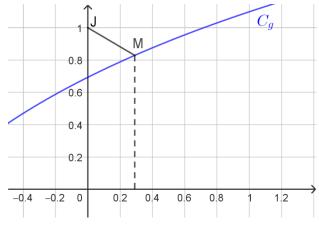
$$h(x) = x^2 + (\ln(x+2) - 1)^2$$

2. On admet que la fonction h est dérivable sur]-2; $+\infty[$ et que pour tout x>-2 :

$$h(x) = \frac{2f(x)}{x+2}$$

- **a.** Dresser le tableau de variations de h. Les limites ne sont pas demandées.
- **b.** En déduire que la valeur de x pour laquelle la distance JM est minimale est α , où α est le nombre réel défini à la question 4 de la partie B.
- **3.** On notera M_{α} le point de \mathcal{C}_{g} d'abscisse α .
- **a.** Montrer que $\ln(\alpha + 2) = 1 2\alpha \alpha^2$.
- **b.** En déduire que la tangente à C_g au point M_α et la droite (JM_α) sont perpendiculaires.

On pourra utiliser le fait que, dans un repère orthonormé, deux droites sont perpendiculaires lorsque le produit de leurs coefficients directeurs est égal à -1.

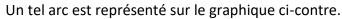


On a représenté ci-dessous la courbe d'équation

$$y = \frac{1}{2}(e^x + e^{-x} - 2)$$

Cette courbe est appelée une « chaînette ».

On s'intéresse ici aux « arcs de chaînette » délimités par deux points de cette courbe, symétriques par rapport à l'axe des ordonnées.



On définit la « largeur » et la « hauteur » de l'arc de chaînette délimité par les points M et M' comme indiqué sur le graphique.

Le but de l'exercice est d'étudier les positions possibles sur la courbe du point M d'abscisse x strictement positive, afin que la largeur de l'arc de chaînette soit égale à sa hauteur.

(E):
$$e^x + e^{-x} - 4x - 2 = 0$$

2. On note
$$f$$
 la fonction définie sur l'intervalle $[0; +\infty[$ par $f(x) = e^x + e^{-x} - 4x - 2$.

a. Vérifier que pour tout
$$x > 0$$
, $f(x) = x\left(\frac{e^x}{x} - 4\right) + e^{-x} - 2$

- **b.** Déterminer la limite de f en $+\infty$.
- **3. a.** Déterminer la dérivée f' de la fonction f.
- **b.** Montrer que l'équation f'(x) = 0 équivaut à l'équation $(e^x)^2 4e^x 1 = 0$.
- **c.** En posant $X = e^x$, montrer que l'équation f'(x) = 0 admet pour unique solution réelle le nombre $\ln(2 + \sqrt{5})$.
- **4.** On donne ci-contre le tableau de signes de la fonction dérivée f' de f.
- **a.** Dresser le tableau de variations de la fonction f.
- **b.** Démontrer que l'équation f(x) = 0 admet une unique solution strictement positive, que l'on notera α .

M'	$M(x; \frac{1}{2}(e^x + e^{-x} - 2))$
hauteur	
-2 $-x$	x
lar	geur

x	0	$\ln\left(2+\sqrt{5}\right)$	+∞
f'(x)	-	0 +	