Correction des exercices d'étude de fonction, sur les limites et la continuité

Exercice 1 1. On a $\lim_{x \to -\infty} 2e^x = 0$ et $\lim_{x \to -\infty} e^x + 1 = 1$ donc par quotient, $\lim_{x \to -\infty} f(x) = 0$

Graphiquement, cela signifie que la droite d'équation y=0 est asymptote horizontale à C.

2. Il s'agit de montrer que la limite de f en $+\infty$ est 2.

On factorise son expression:

$$f(x) = \frac{e^x \times 2}{e^x (1 + e^{-x})} = \frac{2}{1 + e^{-x}}$$

Or $\lim_{x \to +\infty} 1 + e^{-x} = 1$ donc par quotient, $\lim_{x \to +\infty} f(x) = 2$.

3. *f* est dérivable et pour tout *x* réel,

$$f'(x) = \frac{2e^x(e^x + 1) - 2e^x \times e^x}{(e^x + 1)^2} = \frac{2e^x(e^x + 1 - e^x)}{(e^x + 1)^2} = \frac{2e^x}{(e^x + 1)^2} = \frac{2e^x}{e^x + 1} \times \frac{1}{e^x + 1} = \frac{f(x)}{e^x + 1}$$

4. Pour tout x réel, $2e^x$ est positif, de même que $e^x + 1$. Donc f(x) est positif et f'(x) aussi. Ainsi, la fonction f est croissante.

5. On calcule $f(0) = \frac{2e^0}{1+e^{-0}} = 1$ donc C passe par le point I(0;1). De plus,

$$f'(0) = \frac{f(0)}{e^0 + 1} = \frac{1}{1 + 1} = 0.5$$

donc la tangente en I a bien pour coefficient directeur 0,5.

Exercice 2 1a. Un début d'exercice très intéressant : retrouver l'expression d'une fonction quand on connaît certaines valeurs ou limites. Il existe aussi des questions de ce type où il faut utiliser la dérivée.

On sait que f(0) = 1, mais aussi que $f(0) = \frac{a \times 0 + b}{2 \times 0 - 1} = -b$, donc -b = 1 soit b = -1.

De plus, on sait que $\lim_{x \to +\infty} f(x) = 2$. Cherchons à l'exprimer en fonction de a et b.

Par quotient, cette limite est une forme indéterminée, mais on simplifie pour $x \in \mathbb{R} \setminus \{0; 0,5\}$:

$$f(x) = \frac{ax + b}{2x - 1} = \frac{x\left(a + \frac{b}{x}\right)}{x\left(2 - \frac{1}{x}\right)} = \frac{a + \frac{b}{x}}{2 - \frac{1}{x}}$$

Par quotient, $\lim_{x \to +\infty} f(x) = \frac{a}{2} \operatorname{donc} \frac{a}{2} = 2 \operatorname{et} a = 4.$

1b. Le plus simple est de partir de la forme proposée dans la question. Pour $x \in \mathbb{R} \setminus \{0,5\}$:

$$\frac{a}{2} + \frac{a+2b}{4x-2} = \frac{a(4x-2)}{2(4x-2)} + \frac{2(a+2b)}{2(4x-2)} = \frac{4ax-2a+2a+4b}{8x-4} = \frac{4ax+4b}{4(2x-1)} = \frac{ax+b}{2x-1} = f(x)$$

2. f est définie sur $]-\infty;0,5[\cup]0,5;+\infty[$.

• En $+\infty$, on a $\lim_{x\to +\infty} f(x)=2$. $\mathcal C$ admet donc une asymptote horizontale d'équation y=2.

• En $-\infty$, avec la simplification précédente, on retrouve $\lim_{x\to-\infty}f(x)=2$, ce qui nous donne la même asymptote.

• En 0,5 à gauche, $\lim_{x\to 0,5} a\times 0,5+b=4\times 0,5+1=3$ et $\lim_{\substack{x\to 0,5\\x<0.5}} 2x-1=0^-$

Par quotient, $\lim_{\substack{x \to 0.5 \\ x < 0.5}} f(x) = -\infty$ et $\mathcal C$ admet donc une asymptote verticale d'équation x = 0.5.

• En 0,5 à droite, $\lim_{\substack{x \to 0,5 \\ x > 0.5}} 2x - 1 = 0^+$

Par quotient, $\lim_{\substack{x \to 0.5 \\ x > 0.5}} f(x) = +\infty$ et on retrouve la même asymptote verticale.

Suite de la correction de l'exercice 2

3. La forme donnée dans la question 1b. est plus facile.

$$f'(x) = -\frac{4(a+2b)}{(4x-2)^2} = -\frac{24}{(4x-2)^2}$$

f'(x) est donc toujours négatif.

4. On dresse un tableau dans lequel f est décroissante sur $]-\infty;0,5[\cup]0,5;+\infty[$.

On indique les limites trouvées en 2.

Exercice 3

1. On dérive f comme un quotient : pour tout x positif,

$$f'(x) = \frac{4}{(x+2)^2}$$

Ainsi, f est croissante sur son ensemble de définition.

2. Soit *x* positif.

$$f(x) = x$$

$$\Leftrightarrow 5 - \frac{4}{x+2} = x$$

$$\Leftrightarrow \frac{5(x+2)}{x+2} - \frac{4}{x+2} = x$$

$$\Leftrightarrow \frac{5x+6}{x+2} = x$$

$$\Leftrightarrow 5x+6 = x(x+2)$$

$$\Leftrightarrow 5x+6 = x^2 + 2x$$

$$\Leftrightarrow x^2 - 3x - 6 = 0$$

C'est une équation du second degré, de discriminant $\Delta = (-3)^2 - 4 \times 1 \times (-6) = 33$

Ainsi, l'équation a deux solutions $x_1 = \frac{3+\sqrt{33}}{2}$ et $x_2 = \frac{3-\sqrt{33}}{2}$, mais cette dernière étant négative, elle ne nous intéresse pas. On a donc $\alpha = \frac{3+\sqrt{33}}{2} \approx 4.37$

intéresse pas. On a donc $\alpha = \frac{3+\sqrt{33}}{2} \approx 4,37$.

3a. <u>Initialisation</u>: On a $u_0 = 1$ et $u_1 = f(u_0) = f(1) = 5 - \frac{4}{3} = \frac{11}{3} \approx 3,67$.

Ainsi, on a bien $0 \le u_0 \le u_1 \le \alpha$.

<u>Hérédité</u> : soit n entier naturel, supposons $0 \le u_n \le u_{n+1} \le \alpha$.

On applique la fonction f, qui est croissante. De plus, on sait que $f(\alpha) = \alpha$ d'après **2**.

Ainsi,
$$f(0) \le f(u_n) \le f(u_{n+1}) \le f(\alpha)$$

soit
$$3 \le u_{n+1} \le u_{n+2} \le \alpha$$

$$\operatorname{donc} 0 \le u_{n+1} \le u_{n+2} \le \alpha.$$

Ainsi, on a bien montré la propriété voulue au rang suivant et pour tout n entier naturel, $0 \le u_n \le u_{n+1} \le \alpha$.

3b. La suite (u_n) est donc croissante et majorée par lpha, donc elle converge.

f étant continue, on peut même montrer avec le théorème du point fixe qu'elle converge vers α .

A1. g est dérivable sur \mathbb{R} et pour tout $x \in \mathbb{R}$, $g'(x) = 3x^2 - 3$

On étudie le signe de g'(x) qui est un polynôme du second degré, mais on peut l'étudier plus élégamment :

pour tout $x \in \mathbb{R}$, $g'(x) = 3x^2 - 3 = 3(x^2 - 1)$ et les solutions de l'équation g(x) = 0 sont donc 1 et -1.

Ainsi, g'(x) est positif sur $]-\infty;-1]$, puis négatif sur [-1;1] et enfin positif sur $[1;+\infty[$.

Donc g est croissante sur $]-\infty;-1]$, puis décroissante sur [-1;1] et enfin croissante sur $[1;+\infty[$.

A2. On a q(2,1) = -1.039 et q(2,2) = 0.048.

On applique le théorème de la bijection sur [2,1; 2,2[.

g est continue sur [2,1; 2,2], on a g(2,1) < 0 < g(2,2). De plus, g est strictement croissante sur cet intervalle.

D'après le théorème de la bijection, il existe donc un réel α dans l'intervalle 2,1; 2,2 [tel que $g(\alpha) = 0$.

La calculatrice fournit $\alpha=2,19$ (attention à l'arrondi!)

A3. Pour compléter ce qu'on a trouvé à la question **A1**, g(-1) = -2.

Ainsi, g est négative sur $]-\infty;\alpha]$ puis positive sur $[\alpha;+\infty[$.

B1. Cela fait beaucoup de limites à déterminer!

• En $-\infty$, le quotient donne une valeur indéterminée « $\frac{\infty}{\infty}$ ». Pour tout $x \in \mathbb{R} \setminus \{-1; 0; 1\}$ (on va diviser par x^2):

$$f(x) = \frac{x^3 + 2x^2}{x^2 - 1} = \frac{x^2(x+2)}{x^2 \left(1 - \frac{1}{x^2}\right)} = \frac{x+2}{1 - \frac{1}{x^2}}$$

Le numérateur tend vers $-\infty$ et le dénominateur vers 1. Par quotient, $\lim_{x\to -\infty} f(x) = -\infty$.

• En $+\infty$, on trouve $\lim_{x\to +\infty} f(x) = +\infty$ avec la même simplification.

• En -1 à gauche, on a $\lim_{\substack{x \to -1 \\ x < -1}} x^3 + 2x^2 = 1$ et $\lim_{\substack{x \to -1 \\ x < -1}} x^2 - 1 = 0^+$. Par quotient, $\lim_{\substack{x \to -1 \\ x < -1}} f(x) = +\infty$ • En -1 à droite, on a $\lim_{\substack{x \to -1 \\ x > -1}} x^3 + 2x^2 = 1$ et $\lim_{\substack{x \to -1 \\ x > -1}} x^2 - 1 = 0^-$. Par quotient, $\lim_{\substack{x \to -1 \\ x > -1}} f(x) = -\infty$ • En 1 à gauche, on a $\lim_{\substack{x \to 1 \\ x < 1}} x^3 + 2x^2 = 3$ et $\lim_{\substack{x \to 1 \\ x < 1}} x^2 - 1 = 0^-$. Par quotient, $\lim_{\substack{x \to 1 \\ x < 1}} f(x) = -\infty$ • En -1 à droite, on a $\lim_{\substack{x \to 1 \\ x > 1}} x^3 + 2x^2 = 3$ et $\lim_{\substack{x \to 1 \\ x > 1}} x^2 - 1 = 0^+$. Par quotient, $\lim_{\substack{x \to 1 \\ x > 1}} f(x) = +\infty$

B2. Dérivons f et regardons ce qui se passe. Pour tout $x \in \mathbb{R} \setminus \{-1, 1\}$:

$$f'(x) = \frac{(3x^2 + 4x)(x^2 - 1) - (x^3 + 2x^2) \times 2x}{(x^2 - 1)^2} = \frac{x^4 - 3x^2 - 4x}{(x^2 - 1)^2} = \frac{x(x^3 - 3x - 4)}{(x^2 - 1)^2} = \frac{x g(x)}{(x^2 - 1)^2}$$

B3. C'est donc à cela que servait l'étude de la fonction g!

x	$-\infty$ -1 0			1	α		$+\infty$
x		_ () +		+	+	
g(x)	_	_	_	T	- () +	
f'(x)	+	+ () –		- () +	
f	$-\infty$	$\left \right _{-\infty}$	0		+∞	$f(\alpha)$, +∞

Comme on ne connaît pas α , on ne calcule pas $f(\alpha)$.

B4. Il faut qu'on arrive à factoriser le numérateur par $(x^2 - 1)$. Pour tout $x \in \mathbb{R} \setminus \{-1, 1\}$:

$$f(x) = \frac{x^3 + 2x^2}{x^2 - 1} = \frac{x^2(x+2)}{x^2 - 1} = \frac{x^2(x+2) - (x+2) + (x+2)}{x^2 - 1} = \frac{(x^2 - 1)(x+2) + (x+2)}{x^2 - 1} = x + 2 + \frac{x+2}{x^2 - 1}$$

On pouvait aussi partir de l'expression demandée et tout réduire au même dénominateur $(x^2 - 1)$.

1. Une fonction f est paire ssi pour tout x réel, f(-x) = f(x). Or ici,

$$f(-x) = \frac{1}{\sqrt{1 + (-x)^2}} = \frac{1}{\sqrt{1 + x^2}} = f(x)$$

2. On dérive la fonction f pour tout x réel :

$$f'(x) = -\frac{\frac{2x}{2\sqrt{1+x^2}}}{\left(\sqrt{1+x^2}\right)^2} = -\frac{x}{\sqrt{1+x^2}(1+x^2)}$$

Le dénominateur est le produit une racine par $(1 + x^2)$, toujours positif aussi.

Donc f'(x) est positif sur $]-\infty;0]$ puis négatif sur $[0;+\infty[$.

et f est décroissante sur $]-\infty;0]$ puis croissante sur $[0;+\infty[$.

3. On a $\lim_{x\to +\infty} 1+x^2=+\infty$ et $\lim_{x\to +\infty} \sqrt{x}=+\infty$ donc par composition, $\lim_{x\to +\infty} \sqrt{1+x^2}=+\infty$ puis par quotient, $\lim_{x\to +\infty} f(x)=0^+$.

4a. Soit $y \in]0; 1]$.

f est continue, strictement décroissante sur $[0; +\infty[$, et on a f(0)=1 et $\lim_{x\to +\infty}f(x)=0^+$.

Donc d'après le théorème de la bijection, il existe une unique solution α de l'équation $f(\alpha) = y$.

4b. On résout l'équation :

$$f(\alpha) = y \Leftrightarrow \frac{1}{\sqrt{1+\alpha^2}} = y \Leftrightarrow \frac{1}{1+\alpha^2} = y^2 \Leftrightarrow \frac{1}{y^2} = 1 + \alpha^2 \Leftrightarrow \alpha^2 = \frac{1}{y^2} - 1 \Leftrightarrow \alpha = \sqrt{\frac{1}{y^2} - 1}$$

(on ne s'intéresse qu'à la solution positive, donc α ne peut pas être égal à $-\sqrt{\frac{1}{y^2}-1}$)

Exercice 6 1. a. Il s'agit de résoudre l'équation $x^2e^{-x}=e^{-x} \Leftrightarrow x^2=1$, qui a pour solutions 1 et -1.

Il y a donc un point d'intersection de coordonnées (1;g(1)) soit $(1;e^{-1})$

et un autre de coordonnées (-1; g(-1)) soit (1, e).

b. On résout maintenant l'inéquation $x^2e^{-x} \le e^{-x} \Leftrightarrow x^2 \le 1$ dont l'ensemble solution est [-1;1].

Ainsi, C_g est au-dessus de C_f sur [-1;1], et en-dessous sur $]-\infty;-1] \cup [1;+\infty[$.

2. a.
$$d'(x) = -e^{-x} - (2x \times e^{-x} + x^2 \times (-e^{-x})) = e^{-x}(-1 - 2x + x^2) = e^{-x}(x^2 - 2x - 1)$$

b. Le signe de d'(x) est celui de x^2-2x-1 , polynôme de discriminant $(-2)^2-4\times 1\times (-1)=8$

On remarque que $\sqrt{8} = \sqrt{4 \times 2} = 2\sqrt{2}$

Ses racines sont donc $\frac{2-2\sqrt{2}}{2} = 1 - \sqrt{2}$ et $1 + \sqrt{2}$.

Ainsi, d' est positive sur $]-\infty;1-\sqrt{2}]\cup[1+\sqrt{2};+\infty[$ et négative sur $[1-\sqrt{2};1+\sqrt{2}]$

et donc d est croissante sur $]-\infty;1-\sqrt{2}]\cup[1+\sqrt{2};+\infty[$ et décroissante sur $[1-\sqrt{2};1+\sqrt{2}]$

c. d admet donc un maximum local en $1-\sqrt{2}$. C'est l'abscisse permettant d'obtenir une distance maximale.

Cette distance est $d(1 - \sqrt{2}) \approx 1.3$ à 0.1 près.

d est aussi croissante sur $[1+\sqrt{2};+\infty[$, mais elle tend vers 0 par croissances comparées, donc l'abscisse trouvée est bien la bonne.

3. Pour tout x réel, h(x) = g(x) - (x + 2), donc les points d'intersection de la droite Δ et de C_g sont bien les points d'abscisse x telle que h(x) = 0.

h est dérivable sur $\mathbb R$ et pour tout x réel, $h'(x)=-e^{-x}-1$, strictement négatif. Donc h est strictement décroissante.

De plus, h est continue et tend vers $+\infty$ en $-\infty$ et vers $-\infty$ en $+\infty$.

D'après le théorème de la bijection, l'équation h(x) = 0 admet une unique solution.

Il y a donc un seul point d'intersection entre la droite Δ et C_q .

Partie A

- **1.** La suite (T_n) modélise la température d'un café qui se refroidit. On peut conjecturer qu'elle est décroissante.
- **2.** Pour tout entier naturel *n*,

$$T_{n+1} - T_n = -0.2(T_n - 10)$$

 $\Leftrightarrow T_{n+1} - T_n = -0.2T_n + 2$
 $\Leftrightarrow T_{n+1} = -0.2T_n + T_n + 2$
 $\Leftrightarrow T_{n+1} = 0.8T_n + 2$

3. a. Exprimons, pour tout entier naturel n, u_{n+1} en fonction de u_n .

Calculons
$$u_{n+1} = T_{n+1} - 10 = 0.8T_n + 2 - 10 = 0.8T_n - 8 = 0.8(T_n - 10) = 0.8u_n$$

Ainsi, (u_n) est une suite géométrique de raison 0,8. Son premier terme est $u_0=T_0-10=80-10=70$

b. On peut exprimer, pour tout entier naturel n, u_n en fonction de n:

$$u_n = 70 \times 0.8^n$$
 Or $u_n = T_n - 10$, donc $T_n = u_n + 10 = 70 \times 0.8^n + 10$ c. $-1 < 0.8 < 1$, donc $\lim_{n \to +\infty} 0.8^n = 0$. Ainsi, $\lim_{n \to +\infty} T_n = 10$

- **4. a.** La valeur contient la première valeur de n telle que $T_n < 40$, c'est-à-dire 4.
- **b.** Cela représente le nombre de minutes nécessaires pour que le café soit à une température inférieure à $40^{\circ}C$.

Partie B

1. a. Pour t positif,

$$f'(t) = \frac{\theta'(t) \times e^{-0.2t} + \theta(t) \times (-0.2)e^{-0.2t}}{(e^{-0.2t})^2}$$

Or on a supposé que $\theta'(t) = 0.2\theta(t)$, donc :

$$f'(t) = \frac{0.2\theta(t)e^{-0.2t} - 0.2\theta(t)e^{-0.2t}}{(e^{-0.2t})^2} = \frac{0}{(e^{-0.2t})^2} = 0$$

b. On calcule:

$$f(0) = \frac{\theta(0)}{e^{-0.2 \times 0}} = \frac{80}{1} = 80$$

La fonction f a une dérivée nulle, elle est donc constante. C'est la fonction constante égale à 80. Ainsi :

$$f(t) = \frac{\theta(t)}{e^{-0.2t}} \Leftrightarrow 80 = \frac{\theta(t)}{e^{-0.2t}} \Leftrightarrow \theta(t) = 80e^{-0.2t}$$

- **c.** On a bien $\theta(0) = 80e^{-0.2 \times 0} = 80$, et pour tout t positif, $\theta'(t) = 80 \times (-0.2)e^{-0.2t} = -0.2\theta(t)$ La fonction θ répond bien au problème.
- **2.** Essayons d'appliquer le théorème de la bijection. La fonction g est continue.

$$g(0) = 10 + 70 \times e^{-0.2 \times 0} = 10 + 70 = 80$$
 et $\lim_{t \to +\infty} e^{-0.2t} = 0$, donc $\lim_{t \to +\infty} g(t) = 10$.

De plus, la fonction g est dérivable et pour t positif, $g'(t) = 70 \times (-0.2)e^{-0.2t} = -14e^{-0.2t}$.

Cette dérivée est strictement négative pour tout t positif, donc g est strictement décroissante sur $[0; +\infty[$. D'après le théorème de la bijection, 40 étant compris entre 10 et 80, il existe un unique réel t_0 tel que $g(t_0)=40$. On utilise le tablau de valeurs de la calculatrice pour trouver $t_0\approx 4,236$ mn ≈ 254 secondes.

Partie A

1. Ca sent la forme indéterminée, donc on factorise partiellement g:

$$g(x) = x^{2} \left(1 + \frac{1}{x}\right) + \frac{1}{4} + \frac{4}{(1 + e^{x})^{2}}$$

• $\lim_{x \to +\infty} (1 + e^x) = +\infty$, donc par quotient, $\lim_{x \to +\infty} \frac{4}{(1 + e^x)^2} = 0$.

De plus, $\lim_{x \to +\infty} x^2 = +\infty$ et $\lim_{x \to +\infty} 1 + \frac{1}{x} = 1$, donc par produit puis par somme, $\lim_{x \to +\infty} g(x) = +\infty$.

• $\lim_{x \to -\infty} (1 + e^x) = 1$, donc par quotient, $\lim_{x \to -\infty} \frac{4}{(1 + e^x)^2} = 4$.

De plus, $\lim_{x\to -\infty} x^2 = +\infty$ et $\lim_{x\to -\infty} 1 + \frac{1}{x} = 1$, donc par produit puis par somme, $\lim_{x\to -\infty} g(x) = +\infty$.

2. Si g' est strictement croissante et s'annule en 0,

cela signifie qu'elle est négative sur $]-\infty;0]$ puis positive sur $[0;+\infty[$.

3. Ainsi, g est décroissante sur $]-\infty;0]$ puis croissante sur $[0;+\infty[$.

Elle atteint son minimum en 0 et :

$$g(0) = 0^2 + 0 + \frac{1}{4} + \frac{4}{(1+e^0)^2} = \frac{1}{4} + \frac{4}{4} = \frac{5}{4}$$

Partie B 1.

$$f(0) = 3 - \frac{2}{1 + e^0} = 3 - \frac{2}{2} = 2$$

donc le point B(0; 2) appartient bien à C_f .

2. Intéressons-nous au carré de la distance AM, ce qui nous débarrasse de la racine :

$$AM^{2} = \left(x - \left(-\frac{1}{2}\right)\right)^{2} + (f(x) - 3)^{2}$$

$$AM^{2} = \left(x + \frac{1}{2}\right)^{2} + \left(3 - \frac{2}{1 + e^{x}} + 3\right)^{2}$$

$$AM^{2} = x^{2} + x + \frac{1}{4} + \left(-\frac{2}{1 + e^{x}}\right)^{2}$$

$$AM^{2} = x^{2} + x + \frac{1}{4} + \frac{4}{(1 + e^{x})^{2}}$$

et on retrouve bien l'expression de g(x), à croire que ça a été fait exprès.

3. Nous avons trouvé que le minimum de la fonction g était 1,25 dans la partie A.

Cela correspond donc au point d'abscisse 1,25, et d'ordonnée :

$$f(1,25) = 3 - \frac{2}{1 + e^{1,25}}$$

qui ne semble pas pouvoir être exprimé plus simplement.

4. a.

$$f'(x) = \frac{2e^x}{(1 + e^x)^2}$$

b. On s'intéresse à la tangente en 0, donc l'équation est y = f'(0)(x-0) + f(0) = f'(0)x + f(0)Or f(0) = 2 et f'(0) = 0.5, on trouve bien y = 0.5x + 2

5. C'est une question de première sur les équations de droite (qui n'a pas dû être très appréciée des candidats). Un vecteur directeur de T est (1; 0,5).

Or la droite (AB) a pour vecteur directeur $\overrightarrow{AB}(0,5;-1)$, qui est bien un vecteur normal à la droite T. Ainsi, T est perpendiculaire à (AB).