Correction du devoir surveillé sur les limites et la continuité, sujet A

Exercice 1 (5 pts)

a. (0,5 pt)
$$\lim_{x \to +\infty} 3x^2 = +\infty$$
 et $\lim_{x \to +\infty} -\frac{1}{x} = 0$ donc par somme, $\lim_{x \to +\infty} 3x^2 - \frac{1}{x} = +\infty$

b. (0,5 pt) Par somme, c'est une forme indéterminée, mais
$$x^5 + 7x^2 = x^5(1 - \frac{7}{x^3})$$

et
$$\lim_{x \to -\infty} x^5 (1 - \frac{7}{x^3}) = -\infty$$
 par produit.

c. (1 pt)
$$\lim_{x \to -\infty} x^2 = +\infty$$
 et par composition, $\lim_{x \to -\infty} e^{-x} = +\infty$. Donc par produit, $\lim_{x \to -\infty} x^2 e^{-x} + 3 = +\infty$.

d. (1 pt, l'absence de mention du théorème des gendarmes n'est pas pénalisée)

Pour *x* non nul,
$$-1 \le \cos(x) \le 1$$
, puis $-2 \le 2\cos(x) \le 2$ et $-\frac{2}{x^2} \le \frac{2\cos(x)}{x^2} \le \frac{2}{x^2}$.

Or la limite en $+\infty$ des deux membres de gauche et de droite est 0,

donc par le théorème des gendarmes, $\lim_{x \to +\infty} \frac{2\cos(x)}{x^2} = 0$

e. (1 pt, 0,5 si faute de signe)

$$\lim_{\substack{x \to 2 \\ x < 2}} x^3 - 5 = 8 - 5 = 3 \text{ et } \lim_{\substack{x \to 2 \\ x < 2}} x - 2 = 0^-. \text{ Par quotient, } \lim_{\substack{x \to 2 \\ x < 2}} \frac{x^3 - 5}{x - 2} = -\infty.$$

f. (1 pt)
$$\lim_{x \to +\infty} -x^2 + 1 = -\infty$$
 et $\lim_{x \to -\infty} e^x = 0$. Par composition, $\lim_{x \to +\infty} e^{-x^2 + 1} = 0$.

Exercice 2 (5 pts)

a. (1 pt, 0,5 si faute de signe)
$$\lim_{\substack{x \to 0 \\ x > 0}} 3e^x = 3$$
 et $\lim_{\substack{x \to 0 \\ x > 0}} 1 - e^x = 0^-$ donc par quotient, $\lim_{\substack{x \to 0 \\ x > 0}} f(x) = -\infty$

(0,5 pt) On en déduit que C_f admet une asymptote verticale d'équation x = 0.

b. (1 pt) Par quotient, on aboutit à une forme indéterminée. Mais :

$$\frac{3e^x}{1 - e^x} = \frac{e^x \times 3}{e^x \left(\frac{1}{e^x} - 1\right)} = \frac{3}{\frac{1}{e^x} - 1}$$

Ainsi, par quotient, $\lim_{x\to +\infty} f(x) = -3$

c. (1 pt) On dérive f qui est un quotient

$$f'(x) = \frac{3e^x(1 - e^x) - 3e^x \times (-e^x)}{(1 - e^x)^2} = \frac{3e^x(1 - e^x + e^x)}{(1 - e^x)^2} = \frac{3e^x}{(1 - e^x)^2}$$

Cette dérivée est strictement positive pour tout x, donc f est strictement croissante sur $]\mathbf{0}$; $+\infty[$.

- **d.** (1,5 pt, -0,5 par item manquant)
- f est continue sur son ensemble de définition,
- f est également strictement croissante,

•
$$\lim_{\substack{x \to 0 \\ x > 0}} f(x) = -\infty$$
 et $\lim_{\substack{x \to +\infty \\ x > 0}} f(x) = -3$, et $-5 \in]-\infty; -3]$.

• D'après le théorème de la bijection,

l'équation f(x) = -5 admet une unique solution.

Exercice 3 (10 pts)

- **1. a.** (1 pt) $\lim_{x \to -\infty} x = -\infty$ et $\lim_{x \to -\infty} e^{-x} = +\infty$ donc par produit, $\lim_{x \to -\infty} x e^{-x} = -\infty$.
- **1. b.** (1 pt) $\lim_{x\to +\infty} \frac{e^x}{x} = +\infty$ par croissances comparées, donc en passant à l'inverse, $\lim_{x\to +\infty} xe^{-x} = 0$.

(0,5 pt) La courbe C_f possède une asymptote horizontale en $+\infty$, d'équation y=0.

2. (0,5 pt) On dérive f comme un produit : $f'(x) = 1e^{-x} + x(-e^{-x}) = (1-x)e^{-x}$

3.

(0,5 pt) Le signe de f'(x) ne dépend que de (1-x): positif sur $]-\infty;1]$ puis négatif sur $[1;+\infty[$. (0,5 pt) f est donc croissante sur $]-\infty;1]$ puis décroissante sur $[1;+\infty[$.

(0,5 pt, à inclure dans le tableau) On a $f(1) = 1e^{-1} = e^{-1}$ ou $\frac{1}{e}$.

- **4. a.** (1,5 pt, -0,5 par item manquant)
- f est continue sur $[1; +\infty[$,
- f est également strictement décroissante
- $f(1) = e^{-1} \approx 0.37$ et $\lim_{x \to +\infty} f(x) = 0$, et $0.2 \in [0; e^{-1}]$.
- D'après le théorème de la bijection,

l'équation f(x) = 0.2 admet une unique solution sur $[1; +\infty[$.

4. b. (0,5 pt) Un petit coup de calculatrice nous donne $\alpha \approx 2,543$

Attention, il faut ignorer l'autre solution (environ 0,259) sur $]-\infty;1]$.

5. (1 pt) On dérive f', à nouveau comme un produit :

$$f''(x) = -1e^{-x} + (1-x) \times (-e^{-x}) = e^{-x}(-1-1+x) = e^{-x}(x-2)$$

(0,5 pt) Le signe de f''(x) ne dépend que de (x-2): négatif sur $]-\infty;2]$ puis positif sur $[2;+\infty[$.

Ainsi, f est concave sur $]-\infty;2]$ puis convexe sur $[2;+\infty[$.

6. a. (1 pt) Au point d'abscisse a, l'équation de la tangente T_a est : y = f'(a)(x - a) + f(a)

soit
$$y = ((1-a)e^{-a})(x-a) + ae^{-a}$$

On développe le $(x - a) : y = ((1 - a)e^{-a})x - a(1 - a)e^{-a} + ae^{-a}$

et on développe le (1-a) : $y = ((1-a)e^{-a})x - ae^{-a} + a^2e^{-a} + ae^{-a}$

Ainsi, $y = ((1-a)e^{-a})x + a^2e^{-a}$.

b. (0,5 pt) g(a) est l'ordonnée de H_a qui est un point de la droite T_a , mais aussi de l'axe des ordonnées.

Son abscisse x est 0. En reprenant l'équation de la tangente T_a pour x=0, on trouve $g(a)=y=a^2e^{-a}$.

c. (0.5 pt) En considérant que g est une fonction de variable a, on la dérive :

$$g'(a) = 2ae^{-a} + a^2 \times (-e^a) = e^a(2a - a^2) = ae^a(2 - a)$$

La dérivée s'annule pour a=2, donc g admet un maximum pour a=2.

Il s'agit bien de l'abscisse du point d'inflexion de la courbe C_f , comme démontré en 5.