Correction des exercices sur les dérivées des fonctions composées et la convexité

Exercice 1

- **a.** On lit f(1) = 3, et le coefficient directeur de la tangente donne f'(1) = 2
- **b.** f semble convexe sur $]-\infty;1]$ puis concave sur $[1;+\infty[$
- ${f c.}$ La courbe semble traverser la tangente en 1, donc le point d'inflexion de f a pour coordonnées (1;3)

Exercice 2

1. Le coefficient directeur de la tangente correspond à f'(0).

On lit sur le graphique (attention à la graduation) que f'(0) = 0.4.

- **2.** f' semble décroissante sur $]-\infty;-2]$ puis croissante sur [-2;1] et enfin décroissante sur $[1;+\infty[$.
- **3.** Ainsi, f est convexe sur [-2; 1].
- **4.** La fonction f' semble négative sur $]-\infty;-0,5]$ puis positive sur $[-0,5;+\infty[$.

Ainsi, f semble décroissante sur $]-\infty;-0,5]$ puis croissante sur $[-0,5;+\infty[$.

Exercice 3

A. f est convexe sur un intervalle si et seulement si f''(x) est positif pour tout x de cet intervalle.

Or d'après le graphique, f'' n'est pas positive sur [-3; 3]. La réponse A est fausse.

- **B.** f admet un point d'inflexion si et seulement si f'' s'annulle, or elle s'annulle bien trois fois : en -3, en 2 et en 5. La réponse B est vraie.
- **C.** f' est décroissante sur l'intervalle [0; 2] si et seulement si f'' est à valeurs négatives sur cet intervalle.

Or sur [0; 2], f'' est positive. La réponse C est <u>fausse</u>.

Exercice 4

1. On lit sur le graphique que f(0) = 2.

Pour f'(0), on lit le coefficient directeur de la tangente, c'est-à-dire de la droite (AB):

$$f'(0) = \frac{y_B - y_A}{x_B - x_A} = \frac{0 - 2}{2 - 0} = -\frac{2}{2} = -1$$

- **2.** f semble convexe sur $[0; +\infty[$: en particulier, sa courbe est au-dessus de la tangente (AB) sur cet intervalle.
- **3.** On pose pour x réel : u(x) = x + 2 donc u'(x) = 1 et $v(x) = e^{-x}$ donc $v'(x) = -e^{-x}$. Ainsi :

$$f'(x) = 1e^{-x} + (x+2) \times (-e^{-x}) = e^{-x} - xe^{-x} - 2e^{-x} = e^{-x}(1-x-2) = e^{-x}(-x-1)$$

4. Le signe ne dépend que de (-x-1), qui est positif sur $]-\infty;-1]$ et négatif sur $[-1;+\infty[$.

Ainsi, f est croissante sur $]-\infty;-1]$ et décroissante sur $[-1;+\infty[$.

On calcule l'extremum : $f(-1) = (-1 + 2)e^{-(-1)} = 1e^1 = e \approx 2.7$.

5. On dérive f', à nouveau comme un produit.

$$f''(x) = -e^{-x}(-x-1) + e^{-x} \times (-1) = xe^{-x} + e^{-x} - e^{-x} = xe^{-x}$$

6. Le signe de cette dérivée seconde ne dépend que de x : négatif sur $]-\infty;0]$ et positif sur $[0;+\infty[$.

Ainsi, f est bien convexe sur $[0; +\infty[$.

Exercice 5

1a. La fonction est de la forme $v \circ u$ avec $u(x) = 4e^{-x} + 1$, qui a pour dérivée $u'(x) = -4e^{-x}$ et $v(x) = x^3$, qui a pour dérivée $v'(x) = 3x^2$

On applique la formule de la dérivée d'une composée : $f'(x) = -4e^{-x} \times 3(4e^{-x} + 1)^2$

1b. Un carré et une exponentielle sont toujours positifs, mais ils sont multipliés par -4.

f'(x) est donc toujours négatif et f' est décroissante.

b. g est définie ssi $x^3 \ge -8$, donc ssi $x \ge -2$, donc sur $[-2; +\infty[$

Il s'agit d'une fonction composée, on dérive sur $]-2;+\infty[:g'(x)=3x^2\times\frac{1}{2\sqrt{x^3+8}}]$

Exercice 6

a. Il s'agit, à chaque fois, de calculer la dérivée d'un produit, en factorisant par e^x . Pour x réel :

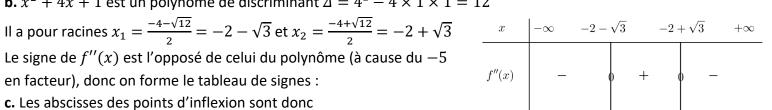
$$f'(x) = -10xe^{x} + (-5x^{2} + 5)e^{x} = (-5x^{2} - 10x + 5)e^{x}$$

et $f''(x) = (-10x - 10)e^{x} + (-5x^{2} - 10x + 5)e^{x} = (-5x^{2} - 10x - 10x + 5 - 10)e^{x}$

$$= (-5x^2 - 20x - 5)e^x = -5(x^2 + 4x + 1)e^x$$

b. $x^2 + 4x + 1$ est un polynôme de discriminant $\Delta = 4^2 - 4 \times 1 \times 1 = 12$

II a pour racines
$$x_1 = \frac{-4 - \sqrt{12}}{2} = -2 - \sqrt{3}$$
 et $x_2 = \frac{-4 + \sqrt{12}}{2} = -2 + \sqrt{3}$



c. Les abscisses des points d'inflexion sont donc

$$-2 - \sqrt{3}$$
 et $-2 + \sqrt{3}$.

Exercice 7

A1. La concentration initiale semble être de 2 g. L^{-1}

A2. La concentration devient inférieure à $0.5g.L^{-1}$ à partir d'environ 8 heures.

A3. Le point d'inflexion semble avoir pour abscisse 6 (le graphique ne permet pas de faire mieux)

B1. Pour $x \in [0; 10]$, $C'(x) = 0.003x^2 - 0.04x - 0.1$

Ce polynôme a pour discriminant $\Delta = (-0.04)^2 - 4 \times 0.003 \times (-0.1) = 0.0016 + 0.0012 = 0.0028$

Il a pour racines $x_1 = \frac{0.04 + \sqrt{0.0028}}{0.006} \approx 15$ et $x_2 = \frac{0.04 - \sqrt{0.0028}}{0.006} \approx -2$ qui sont hors du domaine de définition (ouf).

C'(x) estdonc négatif sur [0; 10] et C est donc toujours décroissante sur cet intervalle.

B2. On continue la dérivation : C''(x) = 0.006x - 0.04

Cette fonction s'annule pour $x = \frac{0.04}{0.006} = \frac{20}{3} \approx 6.67$ qui est l'abscisse de son point d'inflexion.

C est concave sur $\left[0; \frac{20}{3}\right]$ et convexe sur $\left[\frac{20}{3}; 10\right]$

C1. Le médicament n'est plus actif à partir de 7,70 h.

C2. La baisse de la concentration ralentit à partir d'environ 6,67 heures, c'est le moment à partir duquel la fonction C devient convexe.