Correction de l'interrogation écrite sur le dénombrement

Exercice 1 (2 pts)

1a. (0,5 pt) Comme indiqué dans l'énoncé, une anagramme est une permutation, ici de huit lettres. Il existe donc $8! = 40\,320$ anagrammes.

1b. (0,5 pt) Une fois la lettre E placée en premier, il reste 7! = 5040 anagrammes des sept autres lettres.

1c. (0,5 pt) On a 6 choix pour la première consonne, puis à nouveau, il reste 7! choix pour les autres. Ainsi, la réponse est $6 \times 7! = 30\ 240$.

2. (0.5 pt) Si les lettres étaient toutes différentes, il existerait 6! = 720 anagrammes de ce mot.

Or il y a deux A, et l'ordre dans lequel on place « le premier A » puis « le deuxième A » ne changent pas le mot. Ainsi, le nombre d'anagrammes de CANAPÉ est $720 \div 2 = 360$.

Exercice 2 (3 pts)

- **1.** (0,5 pt) L'ordre dans lequel on tire les 4 cartes de la main n'est pas important ici, donc il existe $\binom{52}{4}$ = 270725 mains.
- **2a.** (0,5 pt) Si on se restreint aux 13 piques, il reste $\binom{13}{4} = 715$ mains.
- **2b.** (0,5 pt) Il existe donc 715 mains de chaque couleur, soit $715 \times 4 = 2860$ mains.

(0,5 pt) La probabilité de tirer une telle main est $2860 \div 270725 \approx 0,0106 \approx 1,06\%$.

3. (0,5 pt) Pour choisir les 3 cœurs, on a $\binom{13}{3}$ = 286 choix.

(0,5 pt) Il reste alors 39 possibilités pour la dernière carte. Le nombre de mains comportant 3 cœurs est : $286 \times 39 = 11\,154$.

Exercice 3 (3 pts)

1a. (0,5 pt) L'ordre est important, mais on peut utiliser plusieurs fois la même couleur. Il s'agit d'un 4-uplet. Le nombre de codes est alors $6^4 = 1296$.

1b. (0,5 pt) Les couleurs à choisir étant différentes et l'ordre étant important, il s'agit ici d'un arrangement.

Le nombre de codes est $\frac{6!}{2!} = 6 \times 5 \times 4 \times 3 = 360$.

1c. (0,5 pt) Par soustraction, il existe 1296 - 360 = 936 codes avec au moins une répétition.

2a. (0,5 pt)

- Avec ces informations, le joueur sait qu'il a 2 pions parmi les 4 qui sont bien placés et qu'il ne doit pas déplacer. Pour ces pions bien placés, il existe donc $\binom{4}{2} = 6$ possibilités.
- •Les deux autres pions sont mal placés et doivent donc être intervertis, et c'est l'unique possibilité.
- \rightarrow II ne lui reste donc que $\binom{4}{2} \times 1 = 6$ possibilités.

2b. (0,5 pt)

- A nouveau, il existe $\binom{4}{2} = 6$ possibilités pour les deux pions bien placés.
- Ensuite, l'un des deux pions restants (il y a donc 2 possibilités) est de la bonne couleur mais mal placé. Il faut le placer sur l'autre emplacement.
- Enfin, le dernier pion n'est pas de la bonne couleur. Il existe 6 couleurs en tout, et 4 figurent déjà dans le code précédent. Il faut donc utiliser l'une des 2 couleurs restantes.
- \rightarrow Le nombre de possibilités est donc $\binom{4}{2} \times 2 \times 2 = 24$.

2c. (0,5 pt)

- Il existe 4 possibilités pour le pion bien placé.
- Il existe 3 possibilités pour le pion mal placé, et il peut être replacé à 2 endroits différents.
- Le troisième pion doit prendre une couleur qui n'a pas déjà été utilisée, mais il n'en reste que 2.
- Le quatrième pion doit alors prendre la dernière couleur non utilisée, il ne reste plus qu'un choix.
- \rightarrow Cela fait donc $4 \times 3 \times 2 \times 2 = 48$ possibilités.