Exercices d'intégration par parties

Exercice 1 En posant $u'(x) = e^x$ et v(x) = x, montrer que l'intégrale suivante :

$$I = \int_{0}^{2} x e^{x} dx$$

est égale à $1 + e^2$.

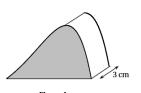
Exercice 2 Montrer, à l'aide d'une intégration par parties, que :

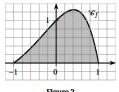
a. l'intégrale
$$I = \int_2^8 x \ln(x) dx$$
 vaut $94 \ln 2 - 15$.

b. l'intégrale
$$J = \int_0^{10} (2t+1)e^{-t}dt$$
 vaut $-23e^{-10} + 3$.

Exercice 3 Un artisan crée des bonbons dont la forme rappelle le profil de la montagne locale. La base d'un tel bonbon est modélisée par la surface grisée, représentée ci-contre.

Cette surface est délimitée par la représentation graphique de la fonction f, définie sur [-1;1] par $f(x) = (1-x^2)e^x$.



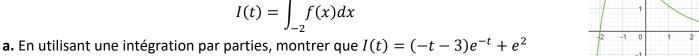


1. Montrer à l'aide d'une intégration par parties, que $\int_{-1}^{1} f(x) dx = 2 \int_{-1}^{1} x e^{x} dx$.

2. Le volume V de chocolat, en cm³, nécessaire à la fabrication d'un bonbon, est donné par $V=3\times S$, où S est l'aire, en cm², de la surface grisée. En déduire que ce volume, arrondi à 0,1 cm³ près, est égal à 4,4 cm³.

Exercice 4 On considère une fonction f définie sur \mathbb{R} par $f(x) = (x+2)e^{-x}$. Pour tout nombre réel $t \ge 0$, on pose :

$$I(t) = \int_{-2}^{t} f(x)dx$$



b. En déduire un exemple de surface non limitée, dont l'aire est finie.

