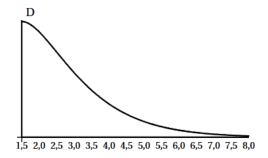
Exercices sur le calcul intégral

Exercice 1 On considère une fonction f, définie sur $[0; +\infty[$ par $f(x) = (4x-2)e^{-x+1}$. On définit également une fonction F, définie sur $[0; +\infty[$ par $F(x) = (ax+b)e^{-x+1}$, où a et b sont deux nombres réels.

- **1.** Déterminer les valeurs des réels a et b telles que la fonction F soit une primitive de la fonction f.
- **2.** En déduire la valeur exacte, puis une valeur approchée à 10^{-2} près, de l'intégrale :

$$I = \int_{\frac{3}{2}}^{8} f(x) dx$$

- **3.** Une municipalité a décidé, de construire une piste de trottinette freestyle. Le profil de cette piste est donné par la courbe représentative de la fonction f sur l'intervalle $\left[\frac{3}{2};8\right]$. L'unité de longueur est le mètre.
- **a.** Donner une valeur approchée au cm près de la hauteur du point de départ D.
- **b.** La municipalité a organisé un concours de graffiti pour orner le mur de profil de la piste. L'artiste retenue prévoit de couvrir environ 75% de



la surface du mur. Sachant d'une bombe aérosol de 150 mL permet de couvrir une surface de 0,8 m², déterminer le nombre de bombes qu'elle devra utiliser pour réaliser cette œuvre.

Exercice 2 Soit f la fonction définie sur $\mathbb R$ par : $f(x)=(2x^3-4x^2)e^{-x}$ On note (C_f) sa courbe représentative dans un repère orthonormé. On pose aussi pour $n\in\mathbb N$:

$$I_n = \int\limits_0^1 x^n e^{-x} dx$$

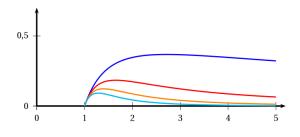
- **1.** Calculer I_0 puis I_1 .
- **2.** Montrer par récurrence que pour tout n entier naturel, $I_{n+1} = (n+1)I_n \frac{1}{e}$
- **3.** En déduire I_2 et I_3 .
- **4.** En déduire l'intégrale suivante : $J = \int_0^1 f(x) dx$ On donnera une valeur exacte, puis une valeur approchée à 10^{-2} .

Exercice 3 On considère, pour tout entier n>0, les fonctions f_n définies sur l'intervalle [1;5] par :

$$f_n(x) = \frac{\ln x}{x^n}$$

Pour tout entier n>0, on note \mathcal{C}_n la courbe représentative de f_n dans un repère orthogonal.

Sur le graphique ci-contre sont représentée les courbes \mathcal{C}_n pour n appartenant à $\{1;2;3;4\}$.



1. Montrer que, pour tout entier n>0 et tout réel x de l'intervalle [1;5] :

$$f'(n) = \frac{1 - n \ln(x)}{x^{n+1}}$$

2. Pour tout entier n > 0, on admet que la fonction f_n admet un maximum sur l'intervalle [1; 5].

On note A_n le point de la courbe \mathcal{C}_n ayant pour ordonnée ce maximum.

Montrer que tous les points A_n appartiennent à une même courbe Γ d'équation :

$$y = \frac{1}{e} \ln(x)$$

(suite de l'exercice 3)

3. a. Montrer que, pour tout entier n > 1 et tout réel x de l'intervalle [1; 5] :

$$0 \le \frac{\ln(x)}{x^n} \le \frac{\ln(5)}{x^n}$$

b. Montrer que pour tout entier n > 1:

$$\int_{1}^{5} \frac{1}{x^{n}} dx = \frac{1}{n-1} \left(1 - \frac{1}{5^{n-1}} \right)$$

 ${f c.}$ Pour tout entier n>0, on s'intéresse à l'aire, exprimée en unités d'aire, de la surface sous la courbe f_n , c'est-à-dire l'aire du domaine du plan délimité par les droites d'équations x=1, x=5, y=0 et la courbe \mathcal{C}_n . Déterminer la valeur limite de cette aire quand n tend vers $+\infty$.

Exercice 4 Les parties A et B sont indépendantes. La partie A ne traite pas de calcul intégral.

On souhaite stériliser une boîte de conserve. Pour cela, on la prend à la température ambiante $T_0=25^{\circ}C$ et on la place dans un four à température constante $T_F = 100$ °C.

La stérilisation débute dès lors que la température de la boîte est supérieure à $85^{\circ}C$.

Partie A: modélisation discrète

Pour n entier naturel, on note T_n la température en degré Celsius de la boîte au bout de n minutes. On a donc $T_0 = 25$. Pour n non nul, la valeur T_n est calculée puis affichée par l'algorithme ci-contre :

- 1. Déterminer la température de la boîte de conserve au bout de 3 minutes. Arrondir à l'unité.
- **2.** Démontrer que, pour tout entier naturel n, on a $T_n = 100 75 \times 0.85^n$.
- 3. Au bout de combien de minutes la stérilisation débute-t-elle ?

def temperature(n) : T = 25for k in range(n): T = 0.85*T + 15return T

Partie B: modélisation continue

Dans cette partie, t désigne un réel positif.

On suppose désormais qu'à l'instant t (exprimé en minutes), la température de la boîte est donnée par f(t)(exprimée en degré Celsius) avec :

$$f(t) = 100 - 75e^{-\frac{\ln 5}{10}t}$$

- **1. a.** Étudier le sens de variations de f sur $[0; +\infty[$
- **b.** Justifier que si $t \ge 10$ alors $f(t) \ge 85$.
- **2.** Soit θ un réel supérieur ou égal à 10.

On note $\mathcal{A}(\theta)$ le domaine délimité par les droites d'équation $t=10, t=\theta, y=85$ et la courbe représentative \mathcal{C}_f de f. On considère que la stérilisation est finie au bout d'un temps θ si l'aire, exprimée en

unité d'aire du domaine $\mathcal{A}(\theta)$, est supérieure à 80.

- a. Justifier, à l'aide du graphique donné, que l'on a A(25) > 80.
- **b.** Justifier que, pour $\theta \ge 10$, on a :

$$\mathcal{A}(\theta) = 15(\theta - 10) - 75 \int_{10}^{\theta} e^{-\frac{\ln 5}{10}t}$$

c. La stérilisation est-elle finie au bout de 20 minutes ?

