
Chapitre 8 – Vecteurs du plan 

1. Notion de vecteur 

1a. Translation 
Définition : Soient   et   deux points distincts du plan. 
La translation qui transforme   en   est une transformation  
qui à tout point   du plan, associe le point   tel que      soit un 
parallélogramme. 

 

Ici, on peut tracer les images en 
comptant les carreaux : la 
« translation qui transforme 𝐴 en 𝐵 » 
revient à se déplacer de 3 carreaux à 
droite, et de 1 carreau en haut. 

 
Ce raisonnement peut être appliqué 
pour les autres translations : la 
« translation qui transforme 𝐹 en 𝐸 » 
revient à se déplacer de 1 carreau à 
droite, et de 2 carreaux en haut. 
C’est ainsi qu’on obtient [𝑀′𝑁′] en partant de [𝑀𝑁]. 

a. On a obtenu le parallélogramme      (et non pas 𝐴𝐵𝐶𝐷, attention : on doit 
 pouvoir suivre le contour des quadrilatères quand on les nomme).
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1b. Définition 
La translation qui transforme   en   est aussi appelée translation de 

vecteur   ⃗⃗⃗⃗  ⃗. A est appelé l’origine, B est appelé l’extrémité de   ⃗⃗⃗⃗  ⃗. 

Un vecteur est défini par : 
• sa direction : la droite      
• son sens : de   vers   
• sa norme : la longueur     

 

Exemple 1 Notez que le vecteur 𝐶𝐶′⃗⃗⃗⃗⃗⃗  ⃗ 
demandé en d est en fait le même vecteur 

que 𝐴𝐵⃗⃗⃗⃗  ⃗ (on appellera cela plus tard un 

représentant du vecteur 𝐴𝐵⃗⃗⃗⃗  ⃗). 
On voit aussi que les points 𝐹 et 𝐹′ sont 

confondues, car le vecteur 𝐵𝐵⃗⃗ ⃗⃗  ⃗ ne fait pas 
« bouger » le point (il s’agit d’un vecteur nul). 
Exemple 2 

•   ⃗⃗⃗⃗  ⃗ a la même direction, mais un sens et une norme différents de   ⃗⃗⃗⃗  ⃗. 

•   ⃗⃗⃗⃗ ⃗⃗  ⃗ a la même norme, mais une direction différente de   ⃗⃗⃗⃗  ⃗.  

Il est donc impossible de toute façon que 𝑀𝑁⃗⃗⃗⃗⃗⃗  ⃗ et 𝐴𝐵⃗⃗⃗⃗  ⃗    aient le même sens.

•   ⃗⃗⃗⃗  ⃗ a la même direction, le même sens et la même norme que   ⃗⃗⃗⃗  ⃗. 
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1c. Vecteurs égaux 
Définition : Deux vecteurs sont dits égaux s’ils ont même direction, sens 
et norme. 

Propriété : Deux vecteurs   ⃗⃗⃗⃗  ⃗ et   ⃗⃗⃗⃗  ⃗ sont égaux si et seulement si      
est un parallélogramme (éventuellement aplati). 

 

1. Les vecteurs égaux à   ⃗⃗⃗⃗  ⃗ sont   ⃗⃗⃗⃗⃗⃗  et   ⃗⃗⃗⃗  ⃗.  

2  a.   ⃗⃗⃗⃗  ⃗ et   ⃗⃗⃗⃗  ⃗ ont même direction et norme, mais pas le même sens.  

  b.   ⃗⃗⃗⃗  ⃗ et   ⃗⃗⃗⃗ ⃗⃗  ont même norme, mais pas la même direction. 

  c.   ⃗⃗⃗⃗  ⃗ et   ⃗⃗ ⃗⃗  ont même direction, mais pas la même norme ni sens. 

3.   •   ⃗⃗⃗⃗  ⃗    ⃗⃗⃗⃗  ⃗, donc      est un parallélogramme. 

  • De même,   ⃗⃗⃗⃗  ⃗    ⃗⃗⃗⃗ , donc      est un parallélogramme. 

4.   ⃗⃗⃗⃗⃗⃗  ⃗    ⃗⃗⃗⃗⃗⃗  ⃗. Cela signifie que   est le milieu du segment [  ]. 
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1d. Représentants 
On peut désigner un vecteur par une seule lettre, comme  ⃗ . Si d’autres 
vecteurs sont égaux à  ⃗ , on les appelle les représentants du vecteur  ⃗ . 
 

 

 

 

 

 

 
c. Pour placer 𝐴′, on part de 𝐴 et 
on suit le vecteur  𝑣 , c’est-à-dire 
qu’on « monte de deux carreaux » 
comme le fait  𝑣  .
d.  
• Pour placer 𝐹, c’est la même 
consigne : on part de 𝐸 et on suit 
le vecteur 𝑢⃗ . 

• Idem pour placer 𝐺 : on part de 𝐸 et on suit le vecteur 𝐵𝐷⃗⃗⃗⃗⃗⃗ . 
• Pour placer 𝐻, c’est différent : il faut qu’on retrouve 𝑢⃗  en allant de 𝐻 à 𝐵. 
On part donc de 𝐵 mais on suit 𝑢⃗  dans l’autre sens. 
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2. Opérations sur les vecteurs 

2a. Somme 
Définition : Soient deux vecteurs  ⃗  et    . 
Le vecteur somme  ⃗  +    est le vecteur correspondant à l’enchaînement 
des translations de vecteurs  ⃗  et   . 

 

 

 

 

 

 

 

 

 

 

 

Exemple 1 
Les pointillés représentent les traits 
de construction : par exemple, pour 
tracer un représentant de 𝑢⃗ + 𝑣  
d’origine 𝐴 : on part de 𝐴, on trace 
un représentant de 𝑢⃗ , 
puis on trace un représentant de 𝑣  
en partant de l’extrémité de 𝑢⃗  .
 
Exemple 2  
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2b. Vecteur opposé 
Définition : Soit un vecteur   ⃗ . Le vecteur opposé   ⃗  est le vecteur qui a 
même direction, même norme, mais de sens contraire. 

L’opposé d’un vecteur   ⃗⃗⃗⃗  ⃗ est le vecteur   ⃗⃗⃗⃗  ⃗, c’est-à-dire que   ⃗⃗⃗⃗  ⃗     ⃗⃗⃗⃗  ⃗ 

 

Pour tracer  𝑢⃗ , il suffit donc de 
tracer 𝑢⃗ , mais dans l’autre sens, 
c’est-à-dire qu’on se déplace 
« en bas à gauche » plutôt qu’ 
« en haut à droite ». 
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2c. Multiplication par un réel 
Définition : Soient un vecteur  ⃗ , et un réel  . Le vecteur   ⃗  a :  
• si   est positif : même sens, norme   fois plus grande, 
• si   est négatif : sens contraire, norme    fois plus grande. 

• si    , c’est le vecteur nul  ⃗ . 

 

 

 

 

 

 

 

  

 

 

 

 

Exemple 1 
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Exemple 2  

a.  La norme de 𝐵𝐶⃗⃗⃗⃗  ⃗ est 3 fois plus grande que celle de 𝐴𝐵⃗⃗⃗⃗  ⃗   ⃗⃗⃗⃗  ⃗     ⃗⃗⃗⃗  ⃗ ., donc  

Réciproquement, la norme de 𝐴𝐵⃗⃗⃗⃗  ⃗ est 3 fois plus petite que celle de 𝐵𝐶⃗⃗⃗⃗  ⃗     ⃗⃗⃗⃗  ⃗  
 
 
  ⃗⃗⃗⃗  ⃗.  :

Quant à 𝐴𝐷⃗⃗ ⃗⃗  ⃗ et 𝐴𝐵⃗⃗⃗⃗  ⃗, leur sens est opposé, donc on recherche un nombre négatif. 

La norme de 𝐴𝐷⃗⃗ ⃗⃗  ⃗ est de 5 carreaux, celle de 𝐴𝐵⃗⃗⃗⃗  ⃗   ⃗⃗ ⃗⃗  ⃗   
 
 
  ⃗⃗⃗⃗  ⃗.  est de 2 carreaux. 

b. 

 

Exemple 3  

a.   ⃗⃗⃗⃗  ⃗  
 
 
  ⃗⃗⃗⃗  ⃗ ;   ⃗⃗⃗⃗  ⃗  

 
 
  ⃗⃗ ⃗⃗  ⃗  et   ⃗⃗⃗⃗  ⃗   

 
 
  ⃗⃗⃗⃗  ⃗. 

b.  
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2d. Vecteurs colinéaires 
Définition : Deux vecteurs  ⃗  et    sont dits colinéaires s’il existe un réel   
tel que  ⃗     . Cela signifie qu’ils ont même direction. 

Propriétés :  
• deux droites      et      sont parallèles si et seulement si 

  ⃗⃗⃗⃗  ⃗ et   ⃗⃗⃗⃗  ⃗ sont colinéaires. 
• trois points  ,   et   sont alignés si et seulement si 

  ⃗⃗⃗⃗  ⃗ et   ⃗⃗⃗⃗  ⃗ sont colinéaires. 

 

a.         et ainsi     
 
 
  . On en déduit que     et    sont colinéaires. 

b.        (et réciproquement,    
 
 
  ), donc  ⃗⃗  et  ⃗  sont colinéaires. 

c.   •  ⃗⃗  et  ⃗⃗  sont colinéaires. On a par exemple     
 
 
   (ou bien     

 
 
  ). 

  •  ⃗⃗  ;  ⃗  et  ⃗⃗  sont colinéaires. On a par exemple  ⃗      et  ⃗  
 
 
  . 
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2e. Relation de Chasles et opérations 

• Relation de Chasles : Soient trois points  ,   et  . Alors   ⃗⃗⃗⃗  ⃗ +   ⃗⃗⃗⃗  ⃗    ⃗⃗⃗⃗  ⃗. 

• Distributivité : pour tout     et vecteurs  ⃗  et    :    ⃗ +       ⃗ +     

 

Exemple 1   a.   ⃗⃗⃗⃗  ⃗    ⃗⃗ ⃗⃗ ⃗⃗  +   ⃗⃗⃗⃗⃗⃗  ⃗   b.   ⃗⃗⃗⃗  ⃗    ⃗⃗ ⃗⃗  +   ⃗⃗⃗⃗  ⃗  c.   ⃗⃗⃗     ⃗⃗ ⃗⃗  +   ⃗⃗ ⃗⃗  

Exemple 2  a.    ⃗ +     ⃗     ⃗ +    ⃗    ⃗⃗    
b.     +  ⃗ +    ⃗          +  ⃗ +   ⃗        ⃗⃗     ⃗⃗    

c.    ⃗⃗⃗⃗  ⃗ +    ⃗⃗⃗⃗  ⃗     ⃗⃗⃗⃗  ⃗    On décompose  𝐴𝐵⃗⃗⃗⃗  ⃗ en 𝐴𝐵⃗⃗⃗⃗  ⃗ +  𝐴𝐵⃗⃗⃗⃗⃗   

   ⃗⃗⃗⃗  ⃗ +    ⃗⃗⃗⃗  ⃗ +    ⃗⃗⃗⃗  ⃗     ⃗⃗⃗⃗  ⃗   On factorise par 2

   ⃗⃗⃗⃗  ⃗ +  (  ⃗⃗⃗⃗  ⃗ +   ⃗⃗⃗⃗  ⃗)     ⃗⃗⃗⃗  ⃗  On applique la relation de Chasles sur 𝐴𝐵⃗⃗⃗⃗  ⃗ + 𝐵𝐶⃗⃗⃗⃗⃗   

   ⃗⃗⃗⃗  ⃗ +    ⃗⃗⃗⃗  ⃗     ⃗⃗⃗⃗  ⃗ 

   ⃗⃗⃗⃗⃗⃗ +    ⃗⃗⃗⃗  ⃗     ⃗⃗⃗⃗  ⃗ 

Exemple 3  

L’égalité    ⃗⃗⃗⃗ ⃗⃗      ⃗⃗⃗⃗  ⃗   ⃗  se réécrit  

   ⃗⃗⃗⃗ ⃗⃗      ⃗⃗⃗⃗  ⃗    ⃗⃗⃗⃗ ⃗⃗   
 

 
  ⃗⃗⃗⃗  ⃗    ⃗⃗⃗⃗⃗⃗  ⃗   

 

 
  ⃗⃗⃗⃗⃗⃗  

On peut maintenant placer  . 

Exemple 4 

a.       (  ⃗⃗⃗⃗  ⃗ +   ⃗⃗⃗⃗  ⃗)       ⃗⃗⃗⃗  ⃗        ⃗⃗⃗⃗  ⃗     ⃗⃗  

b.       ⃗⃗⃗⃗  ⃗     ⃗⃗⃗⃗  ⃗         ⃗⃗⃗⃗  ⃗ +    ⃗⃗⃗⃗  ⃗     ⃗⃗  
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3. Repère et coordonnées 

3a. Coordonnées d’un vecteur 
Dans le plan, on peut définir un repère par un point   appelé origine, et 
deux vecteurs    et   .  

Dans un repère orthonormé (  ;    ;   ), chaque vecteur  ⃗  est repéré par 

ses coordonnées (  ;  ) telles que  ⃗  =    +    . On note  ⃗       ou  ⃗  (  ). 

 

Exemple 1 
a.         ;         et       . 

b.   (
 
 
) ;  ⃗ (

  
 

) ;   (
 
  

) ;   (
 
 
) ;   (

 
 
) ;   (

  
 

) ;   ⃗⃗⃗⃗  ⃗ (
  
 

) ;   ⃗⃗⃗⃗  ⃗ (
 
  

)  

Exemple 2 
 

b.   ⃗⃗⃗⃗  ⃗ (
  
  

) 

d.   ⃗⃗ ⃗⃗ ⃗⃗  (
  
 

) : ce sont les mêmes  

coordonnées que celles du point  . 
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3b. Opérations avec les coordonnées 

Propriété : Soient  ⃗  (  ) et    (
 ′
 ′) deux vecteurs, et    .  

•  ⃗ +    a pour coordonnées (
 + ′
 + ′) 

•   ⃗  a pour coordonnées (    ) 

 

•  ⃗ +    (
 
  

) + (
 
 
)  (

 +  
  +  

)  (
 
 
) 

•      (
 
 
)  (

   
   

)  (
  
  

) 

•  ⃗     (
 
  

)  (
 
 
)  (

   
    

)  (
  
  

) 

•     ⃗⃗  (
 
 
)  (

  
 

)  (
      
   

)  (
  
 

) 
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3c. Vecteurs et points 
Propriétés :  
• Soient          et           deux points.  

Le vecteur   ⃗⃗⃗⃗  ⃗ a pour coordonnées  (     
     

) 

• Soient          un point et  ⃗  (
  ⃗⃗⃗ 
  ⃗⃗⃗ 

) un vecteur. 

Alors l’image  ′ du point   par la translation de vecteur  ⃗  a pour 
coordonnées  ′   +   ⃗⃗     +   ⃗⃗   

 

Exemple 1 

a.   ⃗⃗⃗⃗  ⃗ (
   
   

) soit   ⃗⃗⃗⃗⃗⃗ (
 
  

).  

Le vecteur   ⃗⃗⃗⃗  ⃗ étant l’opposé de   ⃗⃗⃗⃗  ⃗, on en déduit   ⃗⃗⃗⃗⃗⃗ (
  
 

). 

b.    +       +    et ainsi        . 

Exemple 2 

a.   ⃗⃗⃗⃗  ⃗ (
      
   

) soit   ⃗⃗⃗⃗⃗⃗ (
 
 
). 

b.  ⃗⃗    ⃗⃗⃗⃗  ⃗  (
  
 

)  (
 
 
)  (

 
 
) 

c.    ⃗⃗    ⃗⃗⃗⃗  ⃗    (
  
 

)  (
 

   
) 

d.   ⃗⃗ ⃗⃗  ⃗ (
   
   

) soit   ⃗⃗ ⃗⃗  ⃗ (
 
  

) 

Ainsi,     ⃗⃗ ⃗⃗  ⃗  (
  
 

) 

e.   ⃗⃗⃗⃗  ⃗     ⃗⃗⃗⃗  ⃗  (
  
  

). Donc    +       +       et ainsi       . 
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3d. Distance, milieu, norme 
Propriétés : Soient           et           deux points.  

• le milieu du segment [  ] a pour coordonnées (
  +  

 
  
  +  

 
) 

• la distance    est égale à  √       
 +          

• soit  ⃗  (  ) un vecteur. Sa norme est    ⃗    √  +   . 

 
   

  (
  +   

 
 
  +   

 
) 

 (
 +     

 
 
    +     

 
) 

 (
  

 
 
  

 
) 

         

b.  

‖ ⃗ ‖  √     +    √ +   √   
c.  

   √       
 +        

  

 √      +         

 √     +       

 √  +    

 √   
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3e. Déterminant 

Propriété : Soient  ⃗  (  ) et    (
 ′
 ′) deux vecteurs. 

 ⃗  et    sont colinéaires s’il existe un     tel que  ′     et  ′    . 

Définition : Le déterminant de  ⃗  (  ) et    (
 ′
 ′)  

est le nombre      ⃗        ′   ′ . 

Propriété :  ⃗  et    sont colinéaires si leur déterminant vaut 0. 

 

Exemple 1 On calcule les déterminants de ces paires de vecteurs. 

•    ( ⃗     )         —                      

donc  ⃗⃗  et  ⃗⃗  ne sont pas colinéaires. 

•    ( ⃗    ⃗⃗ )      —                  

donc  ⃗⃗  et  ⃗⃗⃗  sont colinéaires. 
• On en déduit que  ⃗⃗  et  ⃗⃗⃗  ne sont pas colinéaires non plus. 
 
Exemple 2 

a.   ⃗⃗⃗⃗  ⃗ (
   
   

) soit   ⃗⃗⃗⃗  ⃗ (
 
  

). 

et   ⃗⃗⃗⃗  ⃗ (
      
    

) soit   ⃗⃗⃗⃗  ⃗ (
  
  

). 

Ainsi    (  ⃗⃗⃗⃗  ⃗    ⃗⃗⃗⃗  ⃗) 
                  

  ⃗⃗⃗⃗  ⃗ et   ⃗⃗⃗⃗  ⃗ sont colinéaires,  
donc           . 

b.   ⃗⃗⃗⃗  ⃗ (
    
   

) soit   ⃗⃗⃗⃗  ⃗ (
  
 

). 

Ainsi    (  ⃗⃗⃗⃗  ⃗    ⃗⃗⃗⃗  ⃗)                        . 

  ⃗⃗⃗⃗  ⃗ et   ⃗⃗⃗⃗  ⃗ ne sont pas colinéaires, donc  ,   et   ne sont pas alignés. 
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