Chapitre 7 - Nombres premiers

1. Premières propriétés

1a. Définition

Définition: Un nombre premier est un entier naturel qui admet exactement deux diviseurs positifs: 1 et lui-même.

Remarques:

- 1 n'est pas premier car il n'a qu'un seul diviseur : lui-même. Ainsi, tout nombre premier p vérifie $p \ge 2$.
- A part 2, tous les nombres premiers sont impairs.
- Un entier naturel non premier supérieur à 1 est appelé nombre composé.

Il existe alors deux nombres a et b supérieurs ou égaux à 2 tels que n=ab.

• Il y a vingt-cinq nombres premiers inférieurs à 100, qui sont :

2;3;5;7;11;13;17;19;23;29;31;37;41;43;47;53;59;61;67;71;73;79;83;93 et 97.

1b. Test de primalité

Propriété : Tout entier naturel $n \ge 2$ est divisible par un nombre premier.

Démonstration: Par récurrence sur *n*.

<u>Initialisation</u>: n = 2 est divisible par 2, qui est premier.

<u>Hérédité</u> : Soit $n \in \mathbb{N}$. Supposons que tout entier inférieur ou égal à n est divisible par un nombre premier.

On considère alors n + 1.

- si n+1 est premier, alors il est divisible par lui-même, qui est premier.
- sinon, il existe deux entiers a et b inférieurs ou égaux à n tels que n+1=ab. Or $a \le n$, donc par hypothèse de récurrence, il existe un nombre premier p tel que a=kp. Donc n+1=kpb et n+1 est divisible par le nombre premier p. Dans tous les cas, n+1 est divisible par un nombre premier, ce qui montre l'hérédité.

Propriété : Si $n \ge 2$ n'est pas premier, alors il admet un diviseur premier p tel que 1 .

Démonstration: Si n n'est pas premier, alors il existe a et b entiers tels que n=ab.

Par l'absurde, supposons que a et b sont tous les deux strictement supérieurs à charly-piva.fr

 \sqrt{n} . On a alors $a > \sqrt{n}$ et $b > \sqrt{n}$, ainsi $ab > \sqrt{n^2}$ et donc ab > n, ce qui est absurde car ab = n.

Ainsi, soit a, soit b est inférieur à \sqrt{n} . Supposons que ce soit le cas pour a. D'après la propriété précédente, il est divisible par un nombre premier, qui est donc également inférieur ou égal à \sqrt{n} .

Ainsi, n = ab est divisible par un nombre premier inférieur ou égal à \sqrt{n} .

Exemple 1

Pour chacun des nombres suivants, indiquer s'il est premier ou non : 143 ; 317 ; 437 ; 1053 en utilisant le critère d'arrêt.

Exemple 2

Montrer que pour tout entier n supérieur ou égal à 3, l'entier n^2-1 n'est pas premier.

Cette propriété est-elle vraie pour n=2 ?

Exemple 3

- **a.** Prouver que, pour tout entier naturel n, l'un des trois entiers n, n + 10 et n + 20 est un multiple de 3.
- **b.** À quelle condition les entiers n, n + 10 et n + 20 sont tous les trois des nombres premiers ?

Exemple 1 Le critère d'arrêt, c'est le fait de s'arrêter de tester les diviseurs premiers supérieurs à \sqrt{n} .

- $\sqrt{143} \approx 12$.
- 2, 3, 5, 7 ne divisent pas 143, mais $143 = 11 \times 13$. Il n'est donc **pas premier**.
- $\sqrt{317} \approx 18$. Or 2, 3, 5, 7, 11, 13 et 17 ne divisent pas 317. Il est donc **premier**.
- $\sqrt{437} \approx 21$. Or 2, 3, 5, 7, 11, 13 et 17 ne divisent pas 437, mais 437 = 19 × 23. Il n'est donc **pas premier**.
- $\sqrt{1.053} \approx 32$.

Heureusement, on trouve assez vite que c'est un **multiple de 3** : $1053 = 3 \times 351$.

Exemple 2 On sait que $n^2 - 1 = (n+1)(n-1)$.

Or pour $n \ge 3$, (n-1) est supérieur ou égal à 2, donc $n^2 - 1$ est composé. Pour n = 2, on a $n^2 - 1 = 3$, qui est bien premier. D'ailleurs, (n-1) est égal à 1.

Exemple 3

a. On utilise les congruences : $n + 10 \equiv n + 9 + 1 \equiv n + 1[3]$ et $n + 20 \equiv n + 18 + 2 \equiv n + 2[3]$.

Or l'un des trois entiers n, n+1 et n+2 est un multiple de 3, donc c'est le cas pour l'un des trois entiers n, n+10 et n+20.

b. Si n=3, on a bien 3, 13 et 23 qui sont tous premiers. Sinon, l'un des trois entiers n, n+10 et n+20 est un multiple de 3 sans être égal à 3. Cet entier n'est donc pas premier. Ainsi, n, n+10 et n+20 ne peuvent être tous premiers que si n=3.

1c. Application du théorème de Gauss

Propriété : Soit *a* et *b* deux entiers non nuls.

- Si un nombre premier *p* divise le produit *ab*, alors *p* divise *a* ou *p* divise *b*.
- Si p premier divise le produit a^k , alors p divise a.

Exemple 1 Soit un entier relatif n tel que $n^2 = 29p + 1$, où p est un nombre premier.

- **1.** Factoriser 29p.
- **2.** Montrer alors que n est de la forme (29k+1) ou (29k-1) avec $k \in \mathbb{Z}$.
- **3.** Déterminer alors les valeurs de n et p qui conviennent au problème.

Exemple 2 Soit p un nombre premier supérieur ou égal à 5.

Montrer que $p^2 - 1$ est divisible par 3 et 8. En déduire qu'il est divisible par 24.

Exemple 1

1.
$$n^2 = 29p + 1 \Leftrightarrow 29p = n^2 - 1 = (n + 1)(n - 1)$$

2. Le nombre 29 divise le produit (n + 1)(n - 1).

D'après le théorème de Gauss, il divise alors (n + 1) ou (n - 1).

Alors il existe $k \in \mathbb{Z}$ tel que n+1=29k d'où n=29k-1 ou alors il existe $k \in \mathbb{Z}$ tel que n=29k+1.

3. Si n = 29k + 1:

$$(29k + 1)^2 = 29p + 1$$

$$\Leftrightarrow (29k)^2 + 2 \times 29k + 1 = 29p + 1$$

$$\Leftrightarrow 29k(29k + 2) = 29p$$

$$\Leftrightarrow k(29k + 2) = p$$

La seule possibilité pour que p soit premier est que k=1, donc p=31.

On a alors $n^2 = 29 \times 31 + 1 = 900$, et ainsi n = 30.

Si n = 29k - 1, on aboutit à k(29k - 2) = p. On doit alors avoir k = 1, mais alors p = 27, qui n'est pas premier. Le cas n = 29k - 1 est donc impossible.

Exemple 2

• p étant supérieur ou égal à 5, il n'est pas multiple de 3. Ainsi :

soit
$$p \equiv 1[3]$$
 et alors $p^2 \equiv 1[3]$ donc $p^2 - 1 \equiv 0[3]$
soit $p \equiv 2[3]$ et alors $p^2 \equiv 8 \equiv 2[3]$ donc $p^2 - 1 \equiv 2^2 - 1 \equiv 3 \equiv 0[3]$

Dans tous les cas, $p^2 - 1$ est multiple de 3.

•
$$p^2 - 1 = (p+1)(p-1)$$

p étant supérieur ou égal à 5, il est impair. Ainsi, (p+1) et (p-1) sont deux nombres paris consécutifs, donc l'un d'entre eux est multiple de 4. Ainsi, p^2-1 est multiple de $2\times 4=8$.

• p^2-1 est un multiple de 3 et de 8, qui sont premiers entre eux. Donc p^2-1 est multiple de $3\times 8=24$.

1d. Infinité des nombres premiers

Propriété: Il existe une infinité de nombres premiers.

Démonstration: Par l'absurde, supposons qu'il y ait un nombre fini de nombres premiers. On les note alors p_1 ; p_2 ; ...; p_n .

- Soit $N = p_1 \times p_2 \times ... \times p_n + 1$.
- Par construction, $N \ge p_n$, donc N n'est pas premier.
- N admet alors un diviseur premier parmi p_1 ; p_2 ; ...; p_n . Notons-le p_k . p_k divise donc N, mais il divise aussi le produit $P = p_1 \times p_2 \times ... \times p_n$. Il divise donc leur différence N P = 1.
- p_k est positif et divise 1, il est forcément égal à 1.

C'est une contradiction car p_k est un nombre premier.

Ainsi, il y a une infinité de nombres premiers.

2. Décomposition en facteurs premiers

2a. Théorème fondamental de l'arithmétique

Propriété : Tout entier $n \ge 2$ peut se décomposer de façon unique en un produit de facteurs premiers, de la forme $p_1^{\alpha_1} \times p_2^{\alpha_2} \times ... \times p_k^{\alpha_k}$.

Démonstration : On démontre seulement l'existence de la décomposition par récurrence sur n. L'unicité de cette décomposition est admise.

<u>Initialisation</u>: pour n = 2, n étant premier, il se décompose en lui-même.

<u>Hérédité</u> : soit $n \in \mathbb{N}$, supposons que tout entier inférieur ou égal à n se décompose en produit de facteurs premiers.

On s'intéresse à n + 1.

- si n + 1 est premier, il se décompose en lui-même.
- si n + 1 est composé, il admet alors deux diviseurs stricts a et b.

On a alors n + 1 = ab avec $a \le n$ et $b \le n$.

Par hypothèse de récurrence, a et b se décomposent en produit de facteurs premiers. Ainsi, le produit ab, égal à n+1 se décompose également.

<u>Conclusion</u>: tout entier $n \ge 2$ se décompose en produit de facteurs premiers.

Exemple 1 Décomposer 189 et 16 758 en produit de facteurs premiers, en commençant par les plus petits.

Exemple 2 A l'aide d'une décomposition en facteurs premiers, déterminer PGCD(126; 735).

Exemple 3 A l'aide d'une décomposition en facteurs premiers, déterminer les réels a et b tels que :

$$\frac{a}{b} = \frac{5292}{5544}$$
 et $a + b = 903$

Exemple 1 Pour trouver des décompositions, on teste avec les nombres premiers dans l'ordre croissant : d'abord 2, puis 3...

• 189 n'est pas divisible par 2, mais par 3.

 $189 = 3 \times 63$, qui est lui-même divisible par 3.

 $189 = 3^2 \times 21$, qui est encore divisible par 3.

 $189 = 3^3 \times 7$ et ce produit ne contient que des facteurs premiers.

16 758

$$= 2 \times 8379$$

$$= 2 \times 3 \times 2793$$

$$= 2 \times 3^2 \times 931$$

$$= 2 \times 3^2 \times 7 \times 133$$

$$=2\times3^2\times7^2\times19$$

Exemple 2
$$126 = 2 \times 63 = 2 \times 3 \times 21 = 2 \times 3^2 \times 7$$

$$735 = 3 \times 245 = 3 \times 5 \times 49 = 3 \times 5 \times 7^{2}$$

En prenant les plus grandes puissances figurant à la fois dans la décomposition des deux nombres, on trouve que pgcd(126 ; 735) = $3 \times 7 = 21$ charly-piva.fr

Exemple 3

5
$$292 = 2^2 \times 1323 = 2^2 \times 3^3 \times 49 = 2^2 \times 3^3 \times 7^2$$

5 $544 = 2^3 \times 693 = 2^3 \times 3^2 \times 77 = 2^3 \times 3^2 \times 7 \times 11$.
Donc pgcd(5 292 ; 5 544) = $2^2 \times 3^2 \times 7 = 252$ et:

$$\frac{5}{5} \frac{292}{5} = \frac{21 \times 252}{22 \times 252} = \frac{21}{22}$$
On sait alors qu'il existe $k \in \mathbb{N}$ tel que $a = 21k$ et $b = 22k$.
Donc $21k + 22k = 903 \Leftrightarrow 43k = 903 \Leftrightarrow k = 21$.
Ainsi, $a = 21 \times 21 = 441$ et $b = 22 \times 21 = 462$.

2b. Nombre de diviseurs

Propriété:

Soit $n \geq 2$ admettant pour décomposition $p_1^{\alpha_1} \times p_2^{\alpha_2} \times ... \times p_k^{\alpha_k}$

- Le nombre de diviseurs de n est alors $(\alpha_1 + 1)(\alpha_2 + 1) \dots (\alpha_k + 1)$.
- Un entier est un carré parfait ssi il admet un nombre impair de diviseurs.
- Tout diviseur d de n admet une décomposition :

$$p_1^{\beta_1} \times p_2^{\beta_2} \times ... \times p_k^{\beta_k}$$

où pour tout indice i, $0 \le \beta_i \le \alpha_i$

Exemple 1 Trouver le nombre de diviseurs de 120 et de 1 575.

Exemple 2 Un entier naturel n possède 15 diviseurs. On sait de plus que n est divisible par 6 mais pas par 8. Quel est cet entier ?

Exemple 1

• $120 = 2^3 \times 3 \times 5$.

Le nombre de diviseurs de 120 est donc $(3 + 1)(1 + 1)(1 + 1) = 4 \times 2 \times 2 = 16$.

• $1575 = 3^2 \times 175 = 3^2 \times 5^2 \times 7$

Le nombre de diviseurs de 1575 est $(2+1)(2+1)(1+1) = 3 \times 3 \times 2 = 18$.

Exemple 2

• n possède 15 diviseurs, et d'après la propriété, ce nombre de diviseurs est de la forme $(\alpha_1+1)(\alpha_2+1)\dots(\alpha_k+1)$: c'est un produit.

Deux décompositions sont possibles : on peut avoir :

$$(\alpha_1 + 1) = 15$$
, soit $\alpha_1 = 14$

ou bien $(\alpha_1 + 1) = 3$ et $(\alpha_2 + 1) = 5$, soit $\alpha_1 = 2$ et $\alpha_2 = 4$.

• Comme n est divisible par 6, on sait que la décomposition fait intervenir les deux nombres premiers 2 et 3. Cela exclut donc le premier cas $\alpha_1=14$.

On sait donc que $n = 2^i \times 3^j$; avec i = 2 et j = 4, ou bien i = 4 et j = 2.

• Or de plus, n n'est pas divisible par 8, donc la puissance i ne peut pas être égale à 4 (sinon n serait même divisible par 16). Ainsi, on a i=2 et j=4.

Conclusion : $n = 2^2 \times 3^4 = 324$.

3. Petit théorème de Fermat

3a. Énoncé

Propriété:

- Soit p premier, et $a \in \mathbb{N}$ non multiple de p. Alors $a^{p-1} \equiv 1[p]$.
- De plus, si a est un entier naturel quelconque, $a^p \equiv a[p]$.

Exemple 1 Montrer que $4^{12} + 6$ est multiple de 7.

Exemple 2 Montrer que pour tout n entier naturel, $3^{6n} - 1$ est divisible par 7.

Exemple 3 Soit $n \in \mathbb{N}$ et $a = n^5 - n$.

- **a.** Montrer que a est divisible par 5.
- **b.** Montrer que $a = n(n^2 1)(n^2 + 1)$ puis que a est divisible par 2 et 3. En déduire que a est divisible par 30.

Exemple 1 D'après le petit théorème de Fermat, $4^6 \equiv 1[7]$.

Ainsi, $4^{12} \equiv (4^6)^2 \equiv 1[7]$,

et $4^{12} + 6 \equiv 1 + 6 \equiv 0$ [7], donc $4^{12} + 6$ est multiple de 7.

Exemple 2 D'après le petit théorème de Fermat, $3^6 \equiv 1[7]$.

Donc pour tout *n* entier naturel, $3^{6n} \equiv (3^6)^n \equiv 1^n \equiv 1[7]$.

Ainsi, $3^{6n} - 1 \equiv 1 - 1 \equiv 0$ [7] et $3^{6n} - 1$ est multiple de 7.

Exemple 3

- **a.** D'après le petit théorème de Fermat, $n^5 \equiv n[5]$, donc $n^5 n \equiv 0[5]$. $n^5 n$ est divisible par 5.
- b. On développe l'expression proposée :

$$n(n^2 - 1)(n^2 + 1) = (n^3 - n)(n^2 + 1) = n^5 + n^3 - n^3 - n = n^5 - n$$

• Si n est pair, alors a est pair.

Si n est impair, alors n^2 est impair, donc $(n^2 + 1)$ est pair. Ainsi, a est pair.

Dans les deux cas, a est divisible par 2.

• Si $n \equiv 0[3]$, alors α est divisible par 3.

Si $n \equiv 1[3]$, alors $n^2 - 1 \equiv 0[3]$, et ainsi a est divisible par 3.

Si $n \equiv 2[3]$, alors $n^2 - 1 \equiv 3 \equiv 0[3]$, et ainsi a est divisible par 3.

Dans tous les cas, a est divisible par 3.

• a est donc divisible par 2, 3 et 5, qui sont premiers entre eux. Donc a est divisible par 30.

3b. Chiffrement RSA

Le système RSA

Son nom provient des initiales de ses inventeurs en 1977 : Ronald Rivest, Adi Shamir et Leonard Adleman.

Soient p et q deux nombres premiers impairs distincts. On pose n = pq et m = (p-1)(q-1).

Soit e un entier tel que 1 < e < m avec e et m premiers entre eux.

On peut montrer qu'il existe alors un entier d unique, tel que $1 \le d < m$ et $ed \equiv 1[m]$.

De plus pour tout a entier naturel, si b est le reste dans la division de a^e par n, alors $b^d \equiv a[n]$.

Envoi d'un message

Alice veut transmettre un message à Bob.

Pour cela, Bob choisit deux nombres p et q, détermine un nombre e.

a. Supposons que Bob ait choisi p=3 et q=11. Il a aussi e=7. Déterminer n, m et enfin d (cf partie A).

Bob diffuse à tout le monde les nombres (n, e), qui représentent sa clé publique.

Il garde pour lui les nombres (p, q), qui représentent sa clé privée.

Alice veut transmettre à Bob le mot « SALUT ».

Elle utilise le tableau ci-contre pour coder chaque lettre du mot :

b. Déterminer le codage de chaque lettre .

Α	В	c	D	Е	F	G	н	- 1	J	К	L	M
0	1	2	3	4	5	6	7	8	9	10	11	12
N	О	Р	Q	R	S	Т	U	V	W	Х	Υ	Z
13	14	15	16	17	18	19	20	21	22	23	24	25

Ensuite, pour chaque lettre a, elle la transforme en b tel que $a^e \equiv b[n]$. Ce sont ces lettres qu'elle envoie à Bob.

- c. Vérifier qu'Alice envoie les lettres suivantes : 6 0 11 26 13.
- d. Comment Bob peut-il faire pour décoder le message ainsi reçu?
- e. Décoder cet autre message qu'Alice a envoyé à Bob : 13 26 21 0 6 1 2 16 7
- **a.** On calcule $n = 3 \times 11 = 33$ et $m = 2 \times 10 = 20$.

On cherche alors d tel que $7d \equiv 1[20]$. $7 \times 3 = 21 \equiv 1[20]$. Ainsi, d = 3.

- **b.** Le mot SALUT devient : 18 0 11 20 19.
- **c.** Pour chaque chiffre a, Alice calcule a^7 puis le reste de la division de a^7 par 33.

Par exemple pour $18:18^7 = 612\ 220\ 032$,

or 612 220 032 = $18522122 \times 33 + 6$. Donc le 18 devient bien un 6.

Il en est de même pour les lettres suivantes.

d. D'après la propriété énoncée au début, $b^d \equiv a[n]$.

Ainsi, pour chaque a, Bob calcule a^3 puis le reste de la division de a^3 par 33.

Par exemple pour le 6 reçu : $6^3 = 216$ et $216 = 6 \times 33 + 18$. On retrouve 18.

Il en est de même pour les lettres suivantes.

e. On applique la même méthode pour chaque lettre.

Par exemple, $13^3 = 2\,197$ et $2\,197 = 66 \times 33 + 19$. La 1ère lettre est 19, soit T.

On trouve dans l'ordre : 19 - 20 - 21 - 0 - 18 - 1 - 8 - 4 - 13.

c'est-à-dire TU VAS BIEN. Alice s'enquiert donc de l'état de Bob.