Interrogation écrite sur les matrices. Calculatrice interdite.

Exercice 1 (1,5 pts) On considère la matrice
$$A$$
 suivante :
$$\begin{pmatrix} 0 & 5 & 4 \\ 1 & 2 & 13 \\ 7 & 0 & 6 \\ 0 & -2 & 1 \end{pmatrix}$$

- **a.** Donner le coefficient $a_{2,3}$.
- **b.** Donner A^t .

Exercice 2 (1 pt) Écrire la matrice $B = (b_{ij})$, à 3 lignes et 3 colonnes, telle que pour tous i et j, $b_{ij} = i - j$.

Exercice 3 (1,5 pts) On considère les matrices A et B suivantes : $A = \begin{pmatrix} 2 & 0 \\ -1 & 5 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 9 \\ 1 & -1 \end{pmatrix}$ Calculer A - B et 2A + 3B.

Exercice 4 (3 pts) Effectuer les produits de matrice suivants : $\begin{pmatrix} 0 & 1 \\ -4 & -2 \end{pmatrix} \begin{pmatrix} -1 & -5 \\ 0 & 4 \end{pmatrix}$ et $\begin{pmatrix} 2 & 1 & 5 \\ 4 & -2 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} -1 \\ 0 \\ 3 \end{pmatrix}$

Exercice 5 (3 pts)

On considère les matrices suivantes :
$$A = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$
 ; $B = \begin{pmatrix} 1 & -1 \\ 0 & 5 \\ 3 & 1 \end{pmatrix}$ et $C = \begin{pmatrix} 4 & 0 & 3 \\ 0 & -2 & 1 \\ 1 & 0 & 0 \end{pmatrix}$

Parmi ces produits, effectuer ceux qui sont possibles : AB ; BA ; A^2 et CB. Si un produit n'est pas possible, expliquer pourquoi.

Exercice 6 (3 pts) Pour chacune de ces deux matrices : $A = \begin{pmatrix} 3 & -2 \\ 1 & 2 \end{pmatrix}$ et $B = \begin{pmatrix} 6 & -9 \\ 10 & -15 \end{pmatrix}$ déterminer si elle est inversible en justifiant. Si oui, calculer son inverse.

Exercice 7 (3 pts) Soit
$$A = \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$$

- **a.** Montrer que $A^2 = 2I_3 A$.
- **b.** En déduire que la matrice A est inversible, en déduire aussi sa matrice inverse en fonction de A. (On ne demande pas de trouver les coefficients de cet inverse, il faut juste exprimer A^{-1} en fonction de A)

Exercice 8 (2 pts) On considère la matrice $J = \begin{pmatrix} 0 & 0 & 2 \\ 2 & 0 & 0 \\ 0 & 2 & 0 \end{pmatrix}$. Calculer J^2 et J^3 . En déduire J^7 en détaillant.

Exercice 9 (2 pts)

On considère une matrice $A = \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix}$, avec a un réel.

Démontrer par récurrence que pour tout entier naturel n non nul, $A^n = \begin{pmatrix} 1 & na \\ 0 & 1 \end{pmatrix}$.