Correction de l'exemple d'interrogation écrite sur la divisibilité et les congruences

Exercice 1 (4 pts)

a. (2 pts)
$$x^2 - y^2 = 63 \Leftrightarrow (x + y)(x - y) = 63$$

On recherche les couples d'entiers <u>naturels</u> (x; y), donc x + y > x - y. On peut avoir :

$$\begin{cases} x + y = 63 \\ x - y = 1 \end{cases}$$
 soit (32; 31).
$$\begin{cases} x + y = 9 \\ x - y = 7 \end{cases}$$
 soit (8; 1).

b. (2 pts)
$$x^2 = 17 + 7xy \iff x^2 - 7xy = 17 \iff x(x - 7y) = 17$$
.

On recherche les couples d'entiers <u>naturels</u> (x; y), donc x > x - 7y. On peut avoir :

$$\begin{cases} x = 17 \\ x - 2y = 1 \end{cases}$$
 soit (17; 8).

Exercice 2 (2 pts) On cherche n tel que n = 46q + 7 et n = 35q + 29.

On en déduit que 46q + 7 = 35q + 29 soit 11q = 22 et q = 2.

Donc $n = 46 \times 2 + 7 = 99$.

Exercice 3 (2 pts) Méthode 1 On sait que a = 7q + 4 et b = 7q' + 6.

a. a+b=7q+4+7q'+6=7(q+q')+10, or 10 ne peut pas être un reste dans une division par 7.

Ainsi, a + b = 7(q + q') + 7 + 3 = 7(q + q' + 1) + 3 et le reste est 3.

b. De même, a - b = 7q + 4 - 7q' - 6 = 7(q - q') - 2 = 7(q - q') - 2 + 7 - 7 = 7(q - q' - 1) + 5 et le reste est 5.

Méthode 2 (plus facile ?) On sait que $a \equiv 4[7]$ et $b \equiv 6[7]$.

- **a.** Ainsi, $a + b \equiv 4 + 6 \equiv 10 \equiv 3$ [7] et le reste est 3.
- **b.** De même, $a-b \equiv 4-6 \equiv -2 \equiv 5[7]$ et le reste est 5.

Exercice 4 1. (3 pts) On remplit le tableau, en constatant que $3^6 \equiv 3^0 \equiv 1[7]$.

<i>n</i> ≡[6]	0	1	2	3	4	5
$3^n \equiv \dots [7]$	1	3	2	6	4	5

2. (1 pt) $3^n - 6$ est divisible par $7 \Leftrightarrow 3^n - 6 \equiv 0$ [7] $\Leftrightarrow 3^n \equiv 6$ [7] $\Leftrightarrow n \equiv 3$ [6] d'après le tableau.

Les entiers n sont donc tous les entiers de la forme 6k + 3, pour $k \in \mathbb{N}$.

3. (2 pts)
$$24^{605} = (3 \times 8)^{605} = 3^{605} \times 8^{605}$$
.

Or $605 \equiv 5[6]$, donc d'après le tableau, $3^{605} \equiv 5[7]$. De plus, $8 \equiv 1[7]$, donc $8^{605} \equiv 1[7]$.

Ainsi, $24^{605} \equiv 3^{605} \times 8^{605} \equiv 1 \times 5 \equiv 5[7]$.

Exercice 5 a. (1 pt) $a_0 = 0^5 - 0 = 0$, $a_1 = 1^5 - 1 = 0$ et $a_2 = 2^5 - 2 = 32 - 2 = 30$.

- **b.** (2 pts) On raisonne par disjonction de cas.
- si n est pair, alors n^5 l'est également, donc $n^5 n$ est pair.
- si n est impair, alors n^5 l'est également, donc n^5-n est pair (une différence d'impairs est paire).

Exercice 6 (4 pts)

Si (n+1) divise (3n-4), alors il existe k entier relatif tel que 3n-4=k(n+1).

On réécrit cette égalité pour avoir une équation diophantienne :

$$3n - 4 = k(n+1)$$

$$\Leftrightarrow$$
 $3n - k(n+1) = 4$

$$\Leftrightarrow$$
 3n + 3 - k(n + 1) = 7 (on ajoute 3 des deux côtés)

$$\Leftrightarrow$$
 3($n+1$) – $k(n+1) = 7$

$$\Leftrightarrow$$
 $(n+1)(3-k)=7$

Il y a deux possibilités :

$${n+1=7 \atop 3-k=1}$$
 soit $n=6$ (et $k=2$, mais on ne le demande pas)

$${n+1=1\atop 3-k=7}$$
 soit $n=0$ (et $k=-4$, ce qui n'est pas contradictoire avec l'énoncé : c'est n qui est naturel)

Les solutions sont donc 6 et 0.

Exercice 7 (3 pts)

On a
$$31 \equiv 5[13]$$
, puis $31^2 \equiv 5^2 \equiv 25 \equiv -1[13]$. Ainsi, $\mathbf{31^{28}} \equiv (31^2)^{14} \equiv (-1)^{14} \equiv \mathbf{1}[13]$.

Ensuite et de même, $5^2 \equiv 25 \equiv -1[13]$, donc $\mathbf{5^{128}} = (5^2)^{64} \equiv (-1)^{64} \equiv \mathbf{1}[13]$.

Par somme, $31^{26} - 5^{128} \equiv 1 - 1 \equiv 0[13]$ et $31^{26} - 5^{128}$ est un multiple de 13.