Exemple d'interrogation écrite sur la divisibilité et les congruences

Cette interro est un peu trop longue et n'est peut-être pas faisable en 1h, d'où le barème sur 24.

Exercice 1 (4 pts) Déterminer les couples d'entiers <u>naturels</u> (x; y) tels que :

a.
$$x^2 - y^2 = 63$$

b.
$$x^2 = 17 + 2xy$$

Exercice 2 (2 pts)

Trouver un entier naturel qui, dans la division euclidienne par 46, a pour reste 7,

et, dans la division euclidienne par 35, a le même quotient et pour reste 29.

Exercice 3 (2 pts) On considère deux entiers a et b.

Le reste de la division euclidienne de a par 7 est 4, et le reste de la division euclidienne de b par 7 est 6.

- **a.** Déterminer le reste de la division euclidienne de a + b par 7.
- **b.** Déterminer le reste de la division euclidienne de a-b par 7.

Exercice 4 (6 pts)

1. Déterminer, suivant les valeurs de n, les restes possibles de 3^n dans la division par 7.

On présentera les résultats dans un tableau.

- **2.** En déduire les entiers n tels que $3^n 6$ est divisible par 7.
- **3.** En déduire que $24^{605} \equiv 5[7]$.

Exercice 5 (3 pts)

On pose pour tout $n \in \mathbb{N}$, $a_n = n^5 - n$.

- **1.** Calculer a_0 ; a_1 et a_2 .
- **2.** Montrer que pour tout n entier naturel, a_n est pair.

Exercice 6 (4 pts)

Déterminer les entiers naturels n tels que (n + 1) divise (3n - 4).

Exercice 7 (3 pts)

En utilisant les congruences, démontrer que $31^{28} - 5^{128}$ est un multiple de 13.