Correction des exercices de premières applications de la divisbilité

Exercice 1

$$n^2 + 7n + 10 = n^2 + 4n + 4 + 3n + 6 = (n+2)^2 + 3(n+2) = (n+2)(n+2+3) = (n+2)(n+5)$$

Donc $(n+2)$ divise bien $(n^2 + 7n + 10)$.

Exercice 2

Soit n < 100. Alors si a est le chiffre des dizaines de n et b son chiffre des unités, on a n = 10a + b. Ainsi, n - (a + b) = 10n + b - a - b = 9n, donc le résultat est bien divisible par 9.

Exercice 3 a. Si (n-4) divise (n+17), alors il existe un entier k tel que

$$n + 17 = k(n - 4)$$

 $\Leftrightarrow (n - 4) + 21 = k(n - 4)$
 $\Leftrightarrow 21 = k(n - 4) - (n - 4)$
 $\Leftrightarrow 21 = (k - 1)(n - 4)$

et ainsi (n-4) divise 21.

b. La fraction est un nombre entier si (n-4) divise (n+17), donc si n-4 divise 21.

Les diviseurs de 21 sont 1 ; 3 ; 7 et 21. Donc (n-4) ne peut être égal qu'à ces 4 nombres.

On en déduit que n ne peut être égal qu'à 5; 7; 11 ou 25.

Exercice 4

Comme dans l'exercice précédent, cette fraction est un entier si et seulement si (6m + 12) divise (2m + 1). Cherchons à obtenir une condition de divisibilité sur m.

$$6m + 12 = k(2m + 1)$$

$$\Leftrightarrow 12 = k(2m + 1) - 6m$$

$$\Leftrightarrow 12 - 3 = k(2m + 1) - 6m - 3$$

$$\Leftrightarrow 9 = k(2m + 1) - 3(2m + 1)$$

$$\Leftrightarrow 9 = (k - 3)(2m + 1)$$

Ainsi, il faut que 2m+1 divise 9. m étant un entier relatif, $2m+1 \in \{-9; -3; -1; 1; 3; 9\}$.

Et donc les valeurs possibles pour m sont dans $\{-5; -2; -1; 0; 1; 4\}$.

Exercice 5

a.
$$a_1 = 2^3 - 3^1 = 8 - 3 = 5$$
. $a_2 = 2^6 - 3^2 = 64 - 9 = 55$ et $a_3 = 2^9 - 3^3 = 512 - 27 = 485$.

Il semblerait que tous ces nombres soient divisibles par 5.

b. L'initialisation a été faite en question **a**.

<u>Hérédité</u> : soit $n \in \mathbb{N}$, supposons que a_n soit divisible par 5. Montrons alors que a_{n+1} est aussi divisible par 5. Par hypothèse de récurrence, il existe alors $k \in \mathbb{N}$ tel que :

$$a_{n} = 5k$$

$$\Leftrightarrow 2^{3n} - 3^{n} = 5k$$

$$\Leftrightarrow 2^{3}(2^{3n} - 3^{n}) = 2^{3} \times 5k$$

$$\Leftrightarrow 2^{3(n+1)} - 2^{3}3^{n} = 40k$$

$$\Leftrightarrow 2^{3(n+1)} - 8 \times 3^{n} = 40k$$

$$\Leftrightarrow 2^{3(n+1)} - 3^{n}(3+5) = 40k$$

$$\Leftrightarrow 2^{3(n+1)} - 3^{n+1} - 5 \times 3^{n} = 40k$$

$$\Leftrightarrow 2^{3(n+1)} - 3^{n+1} = 40k + 5 \times 3^{n}$$

$$\Leftrightarrow a_{n+1} = 5(8k+3^{n})$$

Ainsi, a_{n+1} est divisible par 5.

<u>Conclusion</u>: pour tout $n \in \mathbb{N}$, a_n est divisible par 5.

Correction des exercices sur les équations diophantiennes

Exercice 1

a. Les diviseurs de 20 sont 1; 2; 4; 5; 10 et 20.

b.
$$4x^2 - y^2 = 20 \Leftrightarrow (2x + y)(2x - y) = 20$$
.

Comme x et y sont positifs, on peut supposer que 2x + y > 2x - y. On a alors 3 possibilités.

$$\begin{cases} 2x + y = 20 \\ 2x - y = 1 \end{cases} \Leftrightarrow \begin{cases} y = 20 - 2x \\ 2x - (20 - 2x) = 1 \end{cases} \Leftrightarrow \begin{cases} y = 20 - 2x \\ 4x = 21 \end{cases} \text{ ce qui est impossible, car alors } x = 5,25.$$

$$\begin{cases} 2x + y = 10 \\ 2x - y = 2 \end{cases} \Leftrightarrow \begin{cases} y = 10 - 2x \\ 2x - (10 - 2x) = 2 \end{cases} \Leftrightarrow \begin{cases} y = 10 - 2x \\ 4x = 12 \end{cases} \Leftrightarrow \begin{cases} y = 10 - 2 \times 3 = 4 \\ x = 3 \end{cases}$$

$$\begin{cases} 2x + y = 5 \\ 2x - y = 4 \end{cases} \Leftrightarrow \begin{cases} y = 5 - 2x \\ 2x - (5 - 2x) = 1 \end{cases} \Leftrightarrow \begin{cases} y = 5 - 2x \\ 4x = 6 \end{cases} \text{ ce qui est impossible, car } x = 1,5.$$

Ainsi, le seul couple solution est (3; 4)

Exercice 2

$$5x^2 - 7xy = 17 \Leftrightarrow x(5x - 7y) = 17$$

17 n'ayant que deux diviseurs positifs, il n'existe que deux possibilités.

$$\begin{cases} x = 17 \\ 5x - 7y = 1 \end{cases} \Leftrightarrow \begin{cases} x = 17 \\ 5 \times 17 - 7y = 1 \end{cases} \Leftrightarrow \begin{cases} x = 17 \\ -7y = -84 \end{cases} \Leftrightarrow \begin{cases} x = 17 \\ y = 12 \end{cases}$$

$$\begin{cases} x = 1 \\ 5x - 7y = 17 \end{cases} \Leftrightarrow \begin{cases} x = 1 \\ 5 \times 1 - 7y = 1 \end{cases} \Leftrightarrow \begin{cases} x = 17 \\ -7y = -6 \end{cases} \text{ ce qui est impossible, car alors } y \text{ n'est pas entier.} \end{cases}$$

Ainsi, le seul couple solution est (17; 12).

Exercice 3

a. Les diviseurs de 24 sont 1; 2; 3; 4; 6; 8; 12 et 24.

b. $n^2 - 24$ est le carré d'un entier naturel si et seulement s'il existe k tel que :

$$n^2 - 24 = k^2 \Leftrightarrow n^2 - k^2 = 24 \Leftrightarrow (n + k)(n - k) = 24$$

Comme $n^2 - 24 = k^2$, on a n > k.

De plus, n + k et n - k sont de même parité, on ne peut pas avoir l'un impair et l'autre pair.

Les seuls couples de diviseurs qui conviennent sont donc :

$$\begin{cases} n+k=12 \\ n-k=2 \end{cases} \Leftrightarrow \begin{cases} n=7 \\ k=5 \end{cases}; \begin{cases} n+k=6 \\ n-k=4 \end{cases} \Leftrightarrow \begin{cases} n=5 \\ k=1 \end{cases}$$
 Ainsi, $n \in \{7; 5\}$.

Correction des exercices sur la division euclidienne

Exercice 1

- a. On a bien $1208 = 23 \times 51 + 35$ avec 35 < 51, donc le quotient est 23 et le reste est bien 35.
- **b.** En revanche, $35 \ge 23$, donc l'opération proposée n'est pas la division euclidienne de 1 208 par 23.

Mais
$$1\ 208 = 23 \times 51 + 35 = 23 \times 51 + 23 + 12 = 23 \times 52 + 12$$
.

Comme 12 < 23, le quotient est 52 et le reste est 12.

c.
$$1208 = 23 \times 51 + 35 \Leftrightarrow -1208 = -23 \times 51 - 35$$
, mais le reste doit être compris entre 0 et 51.

$$-1208 = -23 \times 51 - 35 = -23 \times 51 - 51 + 16 = -24 \times 51 + 16$$

On a bien 16 < 51, donc le quotient est -24 et le reste est 16.

Exercice 2

On sait que n = 11q + 8 et p = 11q' + 7 avec q et q' des quotients qui sont inconnus.

Mais alors
$$n + p = 11q + 8 + 11q' + 7 = 11(q + q') + 15$$

La question n'est pas réglée car $15 \ge 11$.

Mais
$$n + p = 11(q + q') + 15 = 11(q + q') + 11 + 4 = 11(q + q' + 1) + 4$$

On a bien 4 < 11, donc le reste de n + p dans la division euclidienne par 11 est 4.

Exercice 3

On sait que a = 7q + 6. Alors

- $2a = 2(7q + 6) = 7 \times 2q + 12 = 7 \times 2q + 7 + 5 = 7(2q + 1) + 5$ et le reste de 2a est 5.
- $-3a = -3(7q + 6) = 7 \times (-3q) 18 = 7 \times (-3q) 21 + 3 = 7 \times (-3q 3) + 3$ et le reste de -3a est 3.
- $4a = 4(7q + 6) = 7 \times 4q + 24 = 7 \times 4q + 21 + 3 = 7(4q + 3) + 3$ et le reste de 4a est 3.

Exercice 4

On cherche n tel que n=4q+1. Comme $246 \le n \le 260$, on a $61 \le q \le 65$.

Si q=61, on obtient $n=4\times 61+1=245$ qui ne convient pas.

Si q=62, on obtient $n=4\times62+1=249$. Or $249=3\times83+0$, donc cela ne correspond pas.

Si q=63, on obtient $n=4\times 63+1=253$. Or $253=3\times 84+1$, donc cela ne correspond pas.

Si q = 64, on obtient $n = 4 \times 64 + 1 = 257$. Or $257 = 3 \times 85 + 2$, ce qui correspond aux deux critères.

Ainsi, n = 257.

Exercice 5

L'énoncé nous dit que n = 5q + 3 et que n = 6(q - 1) + 4.

Ainis,
$$5q + 3 = 6(q - 1) + 4 \Leftrightarrow 5q + 3 = 6q - 6 + 4 \Leftrightarrow -q = -5 \Leftrightarrow q = 5$$
.

Ainsi, $n = 5 \times 5 + 3 = 28$. On vérifie bien que $28 = 6 \times 4 + 4$.

Exercice 6

Soient a et b ces deux entiers. On peut supposer que a > b.

On sait que a - b = 538 et que a = 13b + 34.

Or
$$a - b = 538 \Leftrightarrow a = 538 + b$$
.

Donc
$$a = 13b + 34 \Leftrightarrow 538 + b = 13b + 34 \Leftrightarrow 12b = 504 \Leftrightarrow \mathbf{b} = \mathbf{42}$$
.

On en déduit a = 538 + 42 = 580.

Exercice 7

Jeanne a oublié le fait que n pouvait être inférieur ou égal à 8, et dans ce cas, le reste dans la division par n ne peut pas être 8.