Exercices : premières applications de la divisbilité

Exercice 1 Soit n un entier naturel. Démontrer que (n+2) divise $(n^2+7n+10)$.

Exercice 2 Montrer que, si l'on soustrait à un entier naturel strictement inférieur à 100 la somme de ses chiffres, alors le résultat est divisible par 9.

Exercice 3 a. Soit $n \in \mathbb{N}$. Démontrer que si (n-4) divise (n+17), alors (n-4) divise 21.

b. En déduire toutes les valeurs de n>4 telle que la fraction $\frac{n+17}{n-4}$ soit un nombre entier.

Exercice 4 Soit m un entier relatif. Pour quelles valeurs de n la fraction $\frac{6m+12}{2m+1}$ est-elle un entier relatif?

Exercice 5 On pose, pour tout $n \in \mathbb{N}^*$, $a_n = 2^{3n} - 3^n$.

- **a.** Calculer a_1 , a_2 et a_3 . Conjecturer l'existence d'un diviseur de a_n pour tout $n \in \mathbb{N}^*$.
- **b.** Démontrer cette conjecture par récurrence.

Exercices: équations diophantiennes

- **Exercice 1** a. Donner la liste des diviseurs de $20 \text{ dans} \mathbb{N}$.
 - **b.** En déduire tous les couples d'entiers naturels (x; y) vérifiant $4x^2 y^2 = 20$.

Exercice 2 Déterminer les couples d'entiers naturels (x; y) vérifiant $5x^2 - 7xy = 17$.

- **Exercice 3** a. Déterminer les diviseurs positifs de 24.
 - **b.** Quels sont les entiers naturels n tels que $n^2 24$ soit le carré d'un entier naturel ?

Exercices: division euclidienne

Exercice 1 On considère l'égalité suivante : $1208 = 23 \times 51 + 35$. Répondre aux questions suivantes.

- a. Quels sont le quotient et le reste de la division de 1 208 par 51 ?
- **b.** Quels sont le quotient et le reste de la division de 1 208 par 23 ?
- **c.** Quels sont le quotient et le reste de la division de -1208 par 51?

Exercice 2 Soit n et p deux entiers naturels. On sait que le reste dans la division euclidienne de n par 11 vaut 8 et que le reste dans la division euclidienne de p par 11 vaut 7.

Quel est le reste de n + p dans la division euclidienne par 11 ?

Exercice 3 Sachant que le reste de la division euclidienne d'un entier a par 7 est 6, déterminer le reste de la division euclidienne de 2a par 7, de -3a par 7, et de 4a par 7.

Exercice 4 À la pointe ouest de l'île de Ré, se situe le grand phare des baleines. L'escalier qui mène au sommet a un nombre de marches compris entre 246 et 260.

Ted et Laure sont deux sportifs. Laure qui est plus jeune monte les marches 4 par 4 et à la fin il lui reste 1 marche. Ted, lui, monte les marches 3 par 3 et à la fin il lui reste 2 marches. Combien l'escalier compte-t-il de marches ?

Exercice 5 Un entier naturel n est tel que si on le divise par 5 le reste vaut 3, et si on le divise par 6 le reste augmente de 1 et le quotient diminue de 1. Déterminer n.

Exercice 6 La différence de deux entiers naturels est 538.

Si l'on divise l'un par l'autre, le quotient est 13 et le reste 34. Quels sont ces entiers?

Exercice 7 Soit n un entier naturel non nul. On recherche le reste de la division euclidienne de $(n+2)^3$ par n. Jeanne fait le raisonnement suivant : « $(n+2)^3 = n(n^2+6n+12)+8$ donc le reste de la division de $(n+2)^3$ par n est 8 ». Meryem choisit un exemple : « $(6+2)^3 = 512$ et $512 = 85 \times 6 + 2$ donc le reste n'est pas égal à 8. » Retrouver l'erreur commise par Jeanne.