Correction des exercices : opérations sur les congruences

Exercice 1

- **a.** On a $39 = 7 \times 5 + 4$, ainsi $39 \equiv 4[7]$. Donc $39^3 \equiv 4^3 \equiv 64 \equiv 1[7]$.
- **b.** Ainsi, $39^{60} \equiv (39^3)^{20} \equiv 1^{20} \equiv 1[7]$.

Exercice 2

- $451 = 7 \times 64 + 3$, donc $451 \equiv 3[7]$.
- $6 \equiv -1[7]$, donc $6^2 \equiv (-1)^2 \equiv 1[7]$. Ainsi, $\mathbf{6^{43}} \equiv (6^2)^{21} \times 6 \equiv 1^{21} \times (-1) \equiv -\mathbf{1}[\mathbf{7}]$.
- Enfin, $914 = 7 \times 130 + 4$, donc $914 \equiv 4[7]$.

En conclusion, $(451 \times 6^{43} - 914) \equiv 3 \times (-1) - 4 \equiv -7 \equiv 0$ [7], donc **ce nombre est divisible par 7**.

Exercice 3

- **1a.** Pour tout $k \in \mathbb{N}$, $2^3 \equiv 8 \equiv 1[7]$ donc $\mathbf{2}^{3k} \equiv \mathbf{1}^k \equiv \mathbf{1}[7]$.
- **1b.** $2009 = 3 \times 669 + 2$.

Donc $2^{2009} \equiv 2^{3 \times 669 + 2} \equiv 2^{3 \times 669} \times 2^2 \equiv 1 \times 4 \equiv 4 \cdot 7$.

- **2a.** $10^3 = 1000 = 7 \times 142 + 6 \text{ donc } 10^3 \equiv 6 \equiv -1[7].$
- **2b.** Ainsi, $N \equiv a \times 10^3 + b \equiv -a + b[7]$.

Ainsi, N n'est divisible par 7 que si b-a l'est, or a et b sont compris entre 0 et a avec a non nul.

Les seules possibilités sont que b-a soit égal à 0, 7 ou -7.

- b a = 0 si et seulement si a = b. Ainsi, $N \in \{1001; 2002; 3003; 4004; 5005; 6006; 7007; 8008; 9009\}.$
- b a = 7 si et seulement si b = a + 7. Ainsi, $N \in \{1008, 2009\}$.
- b a = -7 si et seulement si b = a 7. Ainsi, $N \in \{9002, 8001, 7000\}$.

En conclusion,

 $N \in \{1001; 2002; 3003; 4004; 5005; 6006; 7007; 8008; 9009; 1008; 2009; 9002; 8001; 7007\}.$

Correction des exercices : série de restes et disjonctions de cas

Exercice 1

1.

$x \equiv \cdots [5]$	0	1	2	3	4
$3x \equiv \cdots [5]$	0	3	1	4	2

2. Ainsi, les solutions de l'équation $3x \equiv 2[5]$ sont les nombres x tels que $x \equiv 4[5]$.

Ce sont les nombres de la forme 5k + 4 avec $k \in \mathbb{Z}$.

Exercice 2

a.

$x \equiv \cdots [4]$	0	1	2	3
$3x \equiv \cdots [4]$	0	3	2	1
$3x + 2 \equiv \cdots [4]$	2	1	0	3

L'équation $3x + 2 \equiv 10[4]$ est équivalente à l'équation $3x + 2 \equiv 2[4]$.

Ainsi, les solutions de cette équation sont les nombres x tels que $x \equiv 0[4]$.

Ce sont les multiples de 4 : les nombres de la forme 4k avec $k \in \mathbb{Z}$.

b.

$x \equiv \cdots [7]$	0	1	2	3	4	5	6
$2x \equiv \cdots [7]$	0	2	4	6	1	3	5
$2x - 3 \equiv \cdots [7]$	4	6	1	3	5	0	2

Les solutions de l'équation $2x - 3 \equiv 1[5]$ sont les nombres x tels que $x \equiv 2[7]$.

Ce sont les nombres de la forme 7k + 2 avec $k \in \mathbb{Z}$.

Parmi ces nombres, ceux qui sont compris entre -6 et 20 sont -5; 2; 9 et 16.

Exercice 3

a.

$x \equiv \cdots [4]$	0	1	2	3
$x^2 \equiv \cdots [4]$	0	1	0	1

b. Les solutions de l'équation $(x+3)^2 \equiv 1[4]$ sont donc les nombres tels que $x+3 \equiv 1[4]$ ou $x+3 \equiv 3[4]$, soit $x \equiv 2[4]$ ou $x \equiv 0[4]$. En bref, ce sont les nombres de la forme 4k ou 4k+2, c'est-à-dire **les nombres pairs.**

c. On peut réécrire cette équation avec une congruence modulo 4 plutôt qu'une égalité.

$$7x^2 - 4y^2 \equiv 1[4] \Leftrightarrow 7x^2 \equiv 1[4] \Leftrightarrow 7x^2 - 4x^2 \equiv 1[4] \Leftrightarrow 3x^2 \equiv 1[4]$$

Or pour tout x

- si x est pair, on a $x^2 \equiv 0[4]$ et donc $3x^2 \equiv 0[4]$.
- si x est impair, on a $x^2 \equiv 1[4]$ et donc $3x^2 \equiv 3[4]$.

On ne peut donc pas avoir $3x^2 \equiv 1[4]$. Ainsi, l'équation **n'a pas de solution**.

Exercice 4

1. On réécrit l'équation modulo 5 :

$$11x^2 - 7y^2 = 5[5] \Leftrightarrow 11x^2 - 7y^2 \equiv 0[5] \Leftrightarrow 11x^2 \equiv 7y^2[5] \Leftrightarrow 11x^2 - 10x^2 \equiv 7y^2 - 5y^2[5] \Leftrightarrow x^2 \equiv 2y^2[5]$$

2.

$x \equiv \cdots [5]$	0	1	2	3	4
$x^2 \equiv \cdots [5]$	0	1	4	4	1

$y \equiv \cdots [5]$	0	1	2	3	4
$2y^2 \equiv \cdots [5]$	0	2	3	3	2

3. La seul possibilité pour que $x^2 \equiv 2y^2[5]$ d'après le tableau est que $x \equiv 0[5]$ et que $y \equiv 0[5]$, c'est-à-dire que x et y soient tous les deux multiples de 5. On a alors x = 5k et y = 5k'.

$$11x^2 - 7y^2 = 5 \Leftrightarrow 11(5k)^2 - 7(5k')^2 = 5 \Leftrightarrow 275k^2 - 175k'^2 = 5$$

On peut alors diviser les deux membres par 5. $55k^2 - 35k'^2 = 1$.

Or le membre de gauche est un multiple de 5, le membre de droite est 1, qui n'est pas multiple de 5.

Donc l'équation n'admet pas de solution.

Correction des exercices : critères de divisbilité

Exercice 1

Soit n = 100a + 10b + c un entier, avec a, b et c ses trois chiffres.

Alors son renversé est n' = 100c + 10b + a.

Or $10 \equiv 1[9]$ et $100 \equiv 1[9]$, donc $n \equiv a + b + c[9]$.

De même, $n' \equiv c + b + a[9]$.

Donc $n-n'\equiv a+b+c-c-b-a\equiv 0$ [9] et cette différence est bien un multiple de 9.

Exercice 2

1. Si $n \equiv 0[7]$, alors :

$$10a + b \equiv 0[7]$$

$$\Rightarrow -5(10a+b) \equiv 0[7]$$

$$\Rightarrow -50a - 5b \equiv 0[7]$$

$$\Rightarrow -50a + 51a - 5b \equiv 0[7]$$

$$\Rightarrow a - 5b \equiv 0[7]$$

Inversement, si $a-5b\equiv 0$ [7], alors : $10a-50b\equiv 0$ [7] $\Rightarrow 10a-50b+51b\equiv 0$ [7] $\Rightarrow 10a+b\equiv 0$ [7] et ainsi $n\equiv 0$ [7].

2. • Pour n = 816, on a a = 81 et b = 6.

Ainsi $81 - 5 \times 6 = 51$ qui est un multiple de 17. Donc 816 est divisible par 17.

• Pour $n = 16\,983$, on a $a = 1\,698$ et b = 3. Donc on calcule $1\,698 - 5 \times 3 = 1\,683$.

On reprend alors a = 168 et b = 3. On a alors $168 - 5 \times 3 = 153$.

On reprend alors a = 15 et b = 3. On a alors $15 - 5 \times 3 = 0$ qui est un multiple de 17.

Donc 16 983 est multiple de 17.

Exercice 3

1. On sait que $9 \equiv -1[10]$, et donc que $9^2 \equiv 1[10]$.

Ainsi, $9^{231} \equiv 9^{230+1} \equiv (9^2)^{115} \times 9 \equiv 1^{115} \times 9 \equiv 9[10]$.

Le chiffre des unités de 9²³¹ est donc 9.

2. $4^1 \equiv 4[10]$; $4^2 \equiv 16 \equiv 6[10]$ et $4^3 \equiv 4^2 \times 4 \equiv 6 \times 4 \equiv 4[10]$.

On en déduit que $4^n \equiv 4[10]$ si n est impair, et $4^n \equiv 6[10]$ si n est pair.

Ainsi, $4^{125} \equiv 4[10]$. Le chiffre des unités de 4^{125} est donc 4.