<u>Chapitre 1 – Nombres complexes :</u> <u>algèbre et polynômes</u>

Il est bien connu en mathématiques qu'on ne peut pas calculer la racine carrée d'un nombre négatif. En effet, tout carré est positif : on ne peut pas trouver de nombre x tel que $x^2 = -49$, donc $\sqrt{-49}$ n'existe pas. Ainsi, il existe une équation très simple, mais qui n'a pas de solution : $x^2 + 1 = 0$.

Au milieu du XVI^e siècle, le mathématicien italien Jérôme Cardan (Gerolamo Cardano en italien), propose de résoudre le problème suivant : « **trouver deux nombres tels que leur somme soit 10**, **et leur produit soit 40** ».

Il trouve deux solutions, mais les note $\mathbf{5} + \sqrt{-15}$ et $\mathbf{5} - \sqrt{-15}$. Il les nomme « quantités sophistiquées ».

Plus tard, au XVII^e siècle, Descartes les nommera « quantités **imaginaires** ».

Enfin, au XVIII^e siècle, Euler introduit une nouvelle notation : il pose i le nombre tel que $i^2 = -1$. C'est donc la solution de l'équation $x^2 + 1 = 0$.

De nos jours, les nombres formés à partir de ce **nombre imaginaire** *i*, appelés **nombres complexes**, sont fréquemment utilisés :

- en **physique** pour représenter les phénomènes ondulatoires en mécanique (oscillations d'un pendule), en électrique ou en optique, notamment dans les télécommunications,
- en acoustique (l'étude des sons) pour étudier les phénomènes acoustiques d'une salle (révérbération),
- en économie pour modéliser un cycle de croissance ou de prix.

1. Définitions

1a. Ensemble C

Propriété : il existe un ensemble des nombres complexes, noté C, qui :

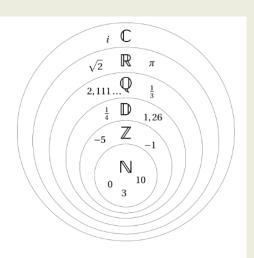
- contient l'ensemble \mathbb{R} ,
- contient un élément i tel que $i^2 = -1$,
- est muni d'une addition et d'une multiplication prolongeant celles de \mathbb{R} .

L'ensemble $\mathbb C$ est donc un ensemble de plus, qui contient tous les ensembles de nombres que vous connaissiez déjà.

Le but de ce chapitre est de déterminer :

- quels sont les autres nombres inclus dans cet ensemble C,
- comment y effectuer les 4 opérations $(+ \times \div)$
- et comment résoudre des équations faisant intervenir des complexes.

Il existe d'autres ensembles de nombres incluant \mathbb{C} , par exemple \mathbb{H} . Toutefois, ces ensembles perdent des règles usuelles par rapport aux nombres réels. Dans \mathbb{C} , il n'y a pas exemple pas de relation d'ordre : nous verrons que deux nombres complexes ne peuvent pas être comparés.



1b. Forme algébrique

Propriété : Tout élément z de \mathbb{C} est de la forme z = a + ib, avec $a, b \in \mathbb{R}$.

- a est la partie réelle de z, notée Re(z),
- b est la partie imaginaire de z, notée Im(z).

On appelle cette forme la forme algébrique de z.

Exemple 1 Voici des nombres complexes, donner leurs parties réelles et imaginaires.

$$z = 5 + 3i$$
 $Re(z) = Im(z) =$ $z = \sqrt{2}i - 5$ $Re(z) = Im(z) =$ $z = \frac{7}{3} - i$ $Re(z) = Im(z) =$ $z = \pi + \frac{i}{4}$ $Re(z) = Im(z) =$ $z = 8$ $Re(z) = Im(z) =$ $z = \frac{3i - 5}{6}$ $Re(z) = Im(z) =$ $z = -6i$ $Re(z) = Im(z) =$ $z = i(i - 2)$ $Re(z) = Im(z) =$

Définitions : soit z = a + ib un nombre complexe.

- Si a=0 (c'est-à-dire Re(z)=0), alors z=ib. On dit que z est un **imaginaire pur**. On note $z \in i\mathbb{R}$.
- Si b=0 (c'est-à-dire Im(z)=0), alors z=a. Alors z est un **nombre** réel, c'est-à-dire que $z\in\mathbb{R}$.

Propriétés :

- Un nombre complexe est nul si et seulement si sa partie réelle et sa partie imaginaire sont nulles.
- Deux nombres complexes sont égaux si et seulement si leurs parties réelles et imaginaires sont égales.

Exemple 2 pour chacun de ces nombres, donner sa forme algébrique, sa partie réelle et sa partie imaginaire.

a.
$$z = 3i - 4 + 2i - 1$$

b.
$$z = 5i - 7.5 + i$$

c.
$$z = 2 - i^2 + i$$

Exemple 3 Soit $x \in \mathbb{R}$. Soit z un nombre complexe tel que $z = x^2 - x - 2 + 3ix$.

Déterminer les valeurs de x telles que :

a. z est un réel. Calculer alors z.

b. z est un imaginaire pur. Calculer alors z.

Exemple 1

- pour z = 5 + 3i, Re(z) = 5 et Im(z) = 3. Notez que Im(z) est un nombre réel.
- pour $z = \frac{7}{3} i$, $Re(z) = \frac{7}{3}$ et Im(z) = -1.
- pour z = 8, Re(z) = 8 et Im(z) = 0. z est un nombre réel.
- pour z = -6i, Re(z) = 0 et Im(z) = -6. z est un imaginaire pur.
- pour $z = \sqrt{2}i 5$, Re(z) = -5 et $Im(z) = \sqrt{2}$.
- pour $z = \pi + \frac{i}{4}$, $Re(z) = \pi \text{ et } Im(z) = \frac{1}{4}$.
- pour $z = \frac{3i-5}{6} = -\frac{5}{6} + \frac{1}{2}i$, $Re(z) = -\frac{5}{6}$ et $Im(z) = \frac{1}{2}$.
- pour $z = i(i-2) = i^2 2i = -1 2i$, Re(z) = -1 et Im(z) = -2.

Exemple 2

a. z = 3i - 4 + 2i - 1 = -5 + 5i en forme algébrique. Re(z) = -5 et Im(z) = 5. **b.** z = 5i - 7,5 + i = -7,5 + 6i en forme algébrique. Re(z) = -7,5 et Im(z) = 6. **c.** $z = 2 - i^2 + i = 2 - (-1) + i = 3 + i$ en forme algébrique. Re(z) = 3 et Im(z) = 1.

Exemple 3

a. z est un réel si et seulement si sa partie imaginaire 3x est nulle, donc si x = 0. On a alors z = 2.

b. z est un imaginaire pur si et seulement si sa partie réelle $x^2 - x - 2$ est nulle. Ce polynôme a pour discriminant $\Delta = (-1)^2 - 4 \times 1 \times (-2) = 9$ et pour racines :

$$x_1 = \frac{-(-1) - \sqrt{9}}{2 \times 1} = \frac{-2}{2} = -1$$
 et $x_1 = \frac{-(-1) + \sqrt{9}}{2 \times 1} = \frac{4}{2} = 2$

Ainsi, $z \in i\mathbb{R}$ si x = -1, on a alors $z = 3i \times (-1) = -3i$ ou si x = 2, on a alors $z = 3i \times 2 = 6i$

1c. Conjugué

Définition: soit z = a + ib un nombre complexe.

Alors le conjugué de z, noté \bar{z} , est le nombre $\bar{z} = a - ib$.

Remarque : $\bar{z} = z$

2. Opérations

2a. Somme & différence

Propriétés: soient z = a + ib et z' = a' + ib' deux nombres complexes. Alors:

- Additionner des complexes revient à ajouter leurs parties réelles et imaginaires : z + z' = (a + a') + i(b + b')
- L'opposé de z, noté -z, revient à prendre l'opposé des parties réelles et imaginaires : -z = -a ib
- Soustraire z' à z revient à ajouter z et l'opposé de z, ainsi $\mathbf{z} \mathbf{z}' = (\mathbf{a} \mathbf{a}') + \mathbf{i}(\mathbf{b} \mathbf{b}')$

Exemple

- **a.** soient $z_1 = 5 2i$ et $z_2 = -2 + 4i$. Calculer $z_1 + z_2$ et $z_1 z_2$.
- **b.** soient $z_1 = -2 + 3i$ et $z_2 = -7i$. Calculer $z_1 + z_2$ et $z_1 z_2$.
- **a.** $z_1 + z_2 = (5 2i) + (-2 + 4i) = 3 + 2i$

$$z_1 - z_2 = (5 - 2i) - (-2 + 4i) = 7 - 6i$$

b. $z_1 + z_2 = (-2 + 3i) + (-7i) = -2 - 4i$

$$z_1 - z_2 = (-2 + 3i) - (-7i) = -2 + 10i$$

2b. Produit

Propriété: soient z = a + ib et z' = a' + ib' deux nombres complexes.

Alors la multiplication de z par z' est donnée par la formule : $\mathbf{z} \times \mathbf{z}' = (aa' - bb') + i(a'b + ab')$

Exemples:

- a. Démontrer la propriété.
- **b.** Calculer A = (8+3i)(-4-i) et B = 3i(5-7i)
- **c.** On pose $z_1 = 5 2i$ et $z_2 = -2 + 4i$. Calculer $z_1 \times z_2$ et z_1^2 .
- **d.** On pose z = -7 + i. Calculer -3iz et $2z^2$.
- **a.** zz' = (a + ib)(a' + ib')
- $=aa'+aib'+iba'+i^2bb'$
- =aa'+iab'+iba'-bb'
- = aa' bb' + i(ab' + ba')

Notez qu'en fait, on n'utilise pas beaucoup cette règle...

b.
$$A = (8+3i)(4-i) = 32-8i+12i-3i^2 = 32+4i+3 = 35+4i$$

$$B = 3i(5-7i) = 15i - 21i^2 = 21 + 15i$$

c.
$$z_1 z_2 = (5 - 2i)(-2 + 4i) = -10 + 20i + 4i - 8i^2 = -10 + 24i + 8 = -2 + 24i$$

Pour z_1^2 , on peut essayer l'identité remarquable $(a - b)^2 = a^2 - 2ab + b^2$.

$$z_1^2 = (5 - 2i)^2$$

$$= 5^2 - 2 \times 5 \times 2i + (2i)^2$$

$$= 25 - 20i + 4i^2$$

$$= 25 - 20i - 4$$

$$= 21 - 20i$$

$$\mathbf{d.} - 3iz = -3i(-7 + i) = 21i - 3i^2 = \mathbf{3} + \mathbf{21}i$$

Ici, on peut appliquer $(a + b)^2 = a^2 + 2ab + b^2$, en se rappelant que $i^2 = -1$.

$$2z^2 = 2(-7+i)^2 = 2(49-14i-1) = 2(48-14i) = 96-28i$$

2c. Quotient

Soient z et z' deux nombres complexes, avec $z' \neq 0$.

Pour calculer $\frac{z}{z'}$, on multiplie le numérateur et le dénominateur par $\overline{z'}$, le conjugué de z'.

Exemple 1

- **a.** Calculer $\frac{4-3i}{1+i}$ et $\frac{1-i}{2i-5}$
- **b.** Soit z = 2 + 3i. Calculer l'inverse de z.
- **c.** Résoudre l'équation suivante : (5 + 3i)z 2 = i + 7

Remarque :
$$\frac{1}{i}$$
 =

Exemple 2 Soient
$$z_1=3i-\sqrt{3}$$
 et $z_2=2-3i$. Calculer $\frac{1}{z_1}$ et $\frac{z_2}{z_1}$.

Exemple 1 a. Nous allons multiplier le numérateur et le dénominateur de la fraction par le conjugué de (1 + i), c'est-à-dire (1 - i).

Le calcul est terminé quand on a obtenu la forme algébrique a + ib du résultat.

$$\frac{4-3i}{1+i} = \frac{(4-3i)(1-i)}{(1+i)(1-i)} = \frac{4-4i-3i+3i^2}{1^2-i^2} = \frac{1-7i}{2} = \frac{1}{2} - \frac{7}{2}i$$

Nous verrons plus tard que pour tout nombre complexe z = a + ib, multiplier z par son conjugué donne toujours un nombre réel, précisément $a^2 + b^2$.

$$\frac{1-i}{2i-5} = \frac{(1-i)(-2i-5)}{(2i-5)(-2i-5)} = \frac{-2i-5+2i^2+5i}{5^2-(2i)^2} = \frac{-7+3i}{25-4i^2} = -\frac{7}{29} + \frac{3}{29}i$$

b. L'inverse de z est $\frac{1}{2}$.

$$\frac{1}{2+3i} = \frac{2-3i}{(2+3i)(2-3i)} = \frac{2-3i}{2^2-(3i)^2} = \frac{2-3i}{4-9i^2} = \frac{2-3i}{13} = \frac{2}{13} - \frac{3}{13}i$$

c. $(5+3i)z-2=i+7 \Leftrightarrow (5+3i)z=i+9$. Ainsi:

$$z = \frac{i+9}{5+3i} = \frac{(i+9)(5-3i)}{(5+3i)(5-3i)} = \frac{5i-3i^2+45-27i}{5^2-(3i)^2} = \frac{48-22i}{34} = \frac{24}{17} - \frac{11}{17}i$$

Remarque

$$\frac{1}{i} = \frac{-i}{i \times (-i)} = \frac{-i}{-i^2} = \frac{-i}{1} = -i$$

Exemple 2

$$\frac{1}{z_1} = \frac{1}{3i - \sqrt{3}} = \frac{-3i - \sqrt{3}}{(3i - \sqrt{3})(-3i - \sqrt{3})} = \frac{-3i - \sqrt{3}}{\sqrt{3}^2 - (3i)^2} = \frac{-3i - \sqrt{3}}{12} = -\frac{\sqrt{3}}{12} - \frac{1}{4}i$$

$$\frac{z_2}{z_1} = z_2 \times \frac{1}{z_1} = (2 - 3i)\left(-\frac{\sqrt{3}}{12} - \frac{1}{4}i\right) = -\frac{\sqrt{3}}{6} + \frac{\sqrt{3}}{4}i - \frac{1}{2}i + \frac{3}{4}i^2$$

$$= -\frac{\sqrt{3}}{6} - \frac{3}{4} + \left(\frac{\sqrt{3}}{4} - \frac{1}{2}\right)i$$

charly-piva.fr

2d. Opérations et conjugué

Propriétés : Soit = $a + ib \in \mathbb{C}$.

•
$$z + \bar{z} = 2Re(z)$$

•
$$z + \bar{z} = 2Re(z)$$
 • $z - \bar{z} = 2iIm(z)$ • $-\bar{z} = \overline{-z}$

$$\bullet - \bar{z} = \overline{-z}$$

• $z \times \bar{z} = a^2 + b^2$: le produit d'un complexe par son conjugué est réel.

Propriétés : Soient $z, z' \in \mathbb{C}$.

$$\bullet \ \overline{z+z'} = \bar{z} + \bar{z'}$$

•
$$\overline{z \times z'} = \overline{z} \times \overline{z'}$$

•
$$\overline{z + z'} = \overline{z} + \overline{z'}$$
 • $\overline{z \times z'} = \overline{z} \times \overline{z'}$ • $\overline{\frac{z}{z'}} = \overline{\frac{z}{z'}} (z' \neq 0)$

• pour tout $n \in \mathbb{N}$, $\overline{z^n} = \overline{z}^n$

Exemple 1 Déterminer la forme algébrique du conjugué de $z = \frac{(3+2i)(1-i)}{(1+2i)^2}$.

Exemple 2 Montrer que pour tout nombre complexe $z \neq 0$, le nombre complexe $\frac{1}{z} + \frac{1}{\overline{z}}$ est un réel.

Exemple 3 Soit $z \in \mathbb{C}$ non nul. Déterminer si le nombre $\frac{z+\bar{z}}{z-\bar{z}}$ est un réel ou un imaginaire pur.

Exemple 1 On applique la propriété : les conjugués de produits/quotients/carrés sont égaux aux produits/quotients/carrés des conjugués.

$$\bar{z} = \frac{\overline{(3+2i)(1-i)}}{(1+2i)^2} = \frac{(3-2i)(1+i)}{(1-2i)^2} = \frac{3+3i-2i-2i^2}{1^2-4i+(2i)^2} = \frac{5+i}{-3-4i}$$

Pour aller plus vite, on applique la nouvelle propriété : $z \times \overline{z} = a^2 + b^2$

$$\frac{5+i}{-3-4i} = \frac{(5+i)(-3+4i)}{(-3-4i)(-3+4i)} = \frac{-15+20i-3i+4i^2}{3^2+4^2} = \frac{-19+17i}{25} = -\frac{19}{25} + \frac{17}{25}i$$

Exemple 2

$$\frac{1}{z} + \frac{1}{\bar{z}} = \frac{\bar{z}}{z\bar{z}} + \frac{z}{\bar{z}\bar{z}} = \frac{\bar{z} + z}{z\bar{z}}$$

Or $\bar{z} + z = 2 Re(z)$ qui est un réel, et $z\bar{z}$ est également un réel.

Donc leur quotient est réel. Ainsi $\frac{1}{z} + \frac{1}{z}$ est un réel.

Exemple 3

$$z + \bar{z} = 2Re(z)$$
 est un réel, et $z - \bar{z} = 2iIm(z) = 2Im(z) \times i$. Donc :
$$\frac{z + \bar{z}}{z - \bar{z}} = \frac{2Re(z)}{2Im(z) \times i} = \frac{Re(z)}{Im(z)} \times \frac{1}{i} = \frac{Re(z)}{Im(z)} \times (-i)$$

Il s'agit donc d'un imaginaire pur

3. Équations et polynômes

3a. Équations linéaires

Résoudre dans C les équations suivantes.

Exemple 1 (équations linéaires, de la forme az = b)

a.
$$(6-10i)z=2$$

b.
$$-3iz = 1$$

c.
$$z(7-i) = 1+2i$$

d.
$$(2i + 1)z = 1 + i - 2iz$$

Exemple 2 (équations produit nul) **a.** (z-2i)(iz+1)=0

a.
$$(z-2i)(iz+1)=0$$

b.
$$2iz^2 + 3z = 0$$

Exemple 3 (équations incluant un complexe et son conjugué) Résoudre dans $\mathbb C$ les équations suivantes :

$$\mathbf{a.} - \bar{z} = 5 - i$$

b.
$$2z + \bar{z} = 3 - 2i$$

c.
$$2z = 3\bar{z} + 5 - i$$

Exemple 1 a.
$$(6-10i)z = 2$$

$$\Leftrightarrow z = \frac{2}{6 - 10i} = \frac{1}{3 - 5i} = \frac{3 + 5i}{3^2 + 5^2} = \frac{3}{34} + \frac{5}{34}i$$

b.
$$-3iz = 1$$

$$\Leftrightarrow z = \frac{1}{-3i} = \frac{i}{-3i \times i} = \frac{i}{3} = \frac{1}{3}i$$

c.
$$z(7-i) = 1 + 2i$$

$$\Leftrightarrow z = \frac{1+2i}{7-i} = \frac{(1+2i)(7+i)}{7^2+1^2} = \frac{7+i+14i+2i^2}{50} = \frac{5+15i}{50} = \frac{1}{10} + \frac{3}{10}i$$

d.
$$(2i+1)z = 1 + i - 2iz \Leftrightarrow (2i+1)z + 2iz = 1 + i \Leftrightarrow (4i+1)z = 1 + i$$

$$\Leftrightarrow z = \frac{1+i}{4i+1} = \frac{(1+i)(-4i+1)}{1^2+4^2} = \frac{-4i+1-4i^2+i}{17} = \frac{5-3i}{17} = \frac{5}{17} - \frac{3}{17}i$$

Exemple 2 a.
$$(z-2i)(iz+1) = 0 \Leftrightarrow \begin{cases} z-2i=0 \\ iz+1=0 \end{cases} \Leftrightarrow \begin{cases} z=2i \\ z=i \end{cases}$$
 et $S = \{i; 2i\}$

b.
$$2iz^2 + 3z = 0 \Leftrightarrow z(2iz + 3) = 0 \Leftrightarrow \begin{cases} z = 0 \\ 2iz + 3 = 0 \end{cases} \Leftrightarrow \begin{cases} z = 0 \\ z = -\frac{3}{2i} = \frac{3}{2}i \end{cases}$$

$$et S = \left\{ \mathbf{0}; \frac{3}{2} \mathbf{i} \right\}$$

Exemple 3 a.
$$-\bar{z} = 5 - i \Leftrightarrow \bar{z} = -5 + i \Leftrightarrow z = -5 - i$$

Pour les suivantes qui font intervenir z et \bar{z} à la fois, on doit poser z = a + ib. On doit alors séparer parties réelles et imaginaires dans les deux membres.

b. On pose z = a + ib. On a alors $\bar{z} = a - ib$.

$$2(a+ib) + (a-ib) = 3 - 2i \iff 3a + ib = 3 - 2i \iff \begin{cases} 3a = 3 \\ b = -2 \end{cases} \iff \begin{cases} a = 1 \\ b = -2 \end{cases}$$

$$\operatorname{donc} z = 1 - 2i$$

c.
$$2(a+ib) = 3(a-ib) + 5 - i \Leftrightarrow -a + 5ib = 5 - i \Leftrightarrow \begin{cases} -a = 5 \\ 5b = -1 \end{cases} \Leftrightarrow \begin{cases} a = -5 \\ b = -\frac{1}{5} \end{cases}$$

$$\operatorname{donc} z = -\mathbf{5} - \frac{1}{5}\mathbf{i}$$

3b. Polynômes du 2nd degré

Propriété: on considère l'équation $z^2 = a$, où $a \in \mathbb{R}$.

- si a > 0, l'équation admet deux solutions réelles : \sqrt{a} et $-\sqrt{a}$
- si a < 0, l'équation admet deux solutions complexes : $\sqrt{-a} i$ et $-\sqrt{-a} i$

Propriété: on considère l'équation $az^2 + bz + c = 0$, où $a, b, c \in \mathbb{R}$ Soit $\Delta = b^2 - 4ac$ le discriminant de l'équation.

• si $\Delta > 0$, l'équation admet deux solutions réelles :

$$z_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 $z_2 = \frac{-b + \sqrt{\Delta}}{2a}$

- si $\Delta = 0$, l'équation admet une solution réelle : $z_0 = \frac{-b}{2a}$
- si Δ < 0, l'équation admet deux solutions complexes conjuguées :

$$z_1 = \frac{-b - i\sqrt{-\Delta}}{2a} \qquad z_2 = \frac{-b + i\sqrt{-\Delta}}{2a}$$

Si $\Delta \neq 0$, alors $az^2 + bz + c = a(z - z_1)(z - z_2)$.

Exemples Résoudre les équations suivantes. Factoriser le membre de gauche de c ; d et e.

a.
$$16 + 2 = 0$$
 b. $22 + 10 = 0$ **c.** 3

c.
$$z^2 - 4z + 5 = 0$$

$$\mathbf{d.} \, z^2 - 5z + 6 = 0$$

a.
$$16 + z^2 = 0$$
 b. $2z^2 + 10 = 0$ **c.** $z^2 - 4z + 5 = 0$ **d.** $z^2 - 5z + 6 = 0$ **e.** $z^2 + 4z + 13 = 0$

a.
$$16 + z^2 = 0 \iff z^2 = -16 \text{ et } S = \{4i; -4i\}$$

b.
$$2z^2 + 10 = 0 \Leftrightarrow 2z^2 = -10 \Leftrightarrow z^2 = -5 \text{ et } \mathbf{S} = \{\sqrt{5}\mathbf{i}; -\sqrt{5}\mathbf{i}\}$$

c.
$$z^2 - 4z + 5 = 0$$
. Le discriminant est $\Delta = (-4)^2 - 4 \times 1 \times 5 = -4$.

Les racines complexes conjuguées sont :

$$z_1 = \frac{-(-4) - i\sqrt{4}}{2 \times 1} = \frac{4 - 2i}{2} = 2 - i$$
 et $z_2 = \overline{z_1} = 2 + i$

Donc
$$S = \{2 - i; 2 + i\} \text{ et } z^2 - 4z + 5 = (z - (2 - i))(z - (2 + i))$$

d.
$$z^2 - 5z + 6 = 0$$
. Le discriminant est $\Delta = (-5)^2 - 4 \times 1 \times 6 = 1$.

Les racines réelles sont :

$$x_1 = \frac{-(-5) - \sqrt{1}}{2 \times 1} = \frac{5 - 1}{2} = 2$$
 et $x_2 = \frac{-(-5) + \sqrt{1}}{2 \times 1} = \frac{5 + 1}{2} = 3$

Donc $S = \{2, 3\}$ et $z^2 - 5z + 6 = (z - 2)(z - 3)$

e. $z^2 + 4z + 13 = 0$. Le discriminant est $\Delta = 4^2 - 4 \times 1 \times 13 = -36$.

$$z_1 = \frac{-4 - i\sqrt{36}}{2 \times 1} = \frac{4 - 6i}{2} = 2 - 3i$$
 et $z_2 = \overline{z_1} = 2 + 3i$

Donc $S = \{2 - 3i; 2 + 3i\}$ et $z^2 + 4z + 13 = (z - (2 - 3i))(z - (2 + 3i))$